We report on the experimental observation of non-resonant, second-order optical sum-frequency generation (SFG) in five different atomic and molecular gases. The measured signal is attributed to a SFG process by characterizing its intensity scaling and its polarization behavior. We show that the electric quadrupole mechanism cannot explain the observed trends and suggest a mechanism based on symmetry breaking along the incident beam path arising from laser-induced species ground state number density gradients. Our results demonstrate that the SFG is about four orders of magnitude stronger than the third-harmonic generation (THG) and independent from any externally applied electric fields. These features make this method suitable for gas number density measurements at the picosecond time scale in reactive flows and plasmas.
more »
« less
Two-Color High Harmonic Generation from Relativistic Plasma Mirrors
High intensity, laser solid interactions are capable of generating attosecond light bursts via high harmonic generation, most work focuses on single beam interactions. In this study, we perform a numerical investigation on the role of wavelength and polarization in relativistic, high harmonic generation from normal-incidence, two-beam interactions off plasma mirrors. We find that the two-beam harmonic generation mechanism is a robust process described by a set of well-defined selection rules. We demonstrate that the emitted harmonics from normal incidence interactions exhibit an intensity optimization when the incident fields are of equal intensity for two-color circularly-polarized fields.
more »
« less
- Award ID(s):
- 1753165
- PAR ID:
- 10417941
- Date Published:
- Journal Name:
- Physical review
- ISSN:
- 2470-0053
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
High-intensity pulse-beams are ubiquitous in scientific investigations and industrial applications ranging from the generation of secondary radiation sources (e.g., high harmonic generation, electrons) to material processing (e.g., micromachining, laser-eye surgery). Crucially, pulse-beams can only be controlled to the degree to which they are characterized, necessitating sophisticated measurement techniques. We present a reference-free, full-field, single-shot spatiospectral measurement technique called broadband single-shot ptychography (BBSSP). BBSSP provides the complex wavefront for each spectral and polarization component in an ultrafast pulse-beam and should be applicable across the electromagnetic spectrum. BBSSP will dramatically improve the application and mitigation of spatiospectral pulse-beam structure.more » « less
-
null (Ed.)Abstract We experimentally demonstrate the spatial self-cleaning of a highly multimode optical beam, in the process of second-harmonic generation in a quadratic nonlinear potassium titanyl phosphate crystal. As the beam energy grows larger, the output beam from the crystal evolves from a highly speckled intensity pattern into a single, bell-shaped spot, sitting on a low energy background. We demonstrate that quadratic beam cleanup is accompanied by significant self-focusing of the fundamental beam, for both positive and negative signs of the linear phase mismatch close to the phase-matching condition.more » « less
-
Vacuum-ultraviolet (VUV) light is critical for the study of molecules and materials, but the generation of femtosecond pulses in the VUV region at high repetition rates has proven difficult. Here we demonstrate the efficient generation of VUV light at megahertz repetition rates using highly cascaded four-wave mixing processes in a negative-curvature hollow-core fiber. Both even- and odd-order harmonics are generated up to the 15th harmonic (69 nm, 18.0 eV), with high energy resolution of . In contrast to direct high harmonic generation, this highly cascaded harmonic generation process requires lower peak intensity and therefore can operate at higher repetition rates, driven by a robust fiber-laser system in a compact setup. Additionally, we present numerical simulations that explore the fundamental capabilities and spatiotemporal dynamics of highly cascaded harmonic generation. This VUV source can enhance the capabilities of spectroscopies of molecular and quantum materials, such as photoionization mass spectrometry and time-, angle-, and spin-resolved photoemission.more » « less
-
We present a high-power tunable deep-ultraviolet (DUV) laser that uses two consecutive cavity enhanced doubling stages with LBO and CLBO crystals to produce the fourth harmonic of an amplified homebuilt external cavity diode laser. The system generates up to 2.75 W of 261.5 nm laser light with a ∼2 W stable steady-state output power and performs second harmonic generation in a largely unexplored high intensity regime in CLBO for continuous wave DUV light. We use this laser to perform fluorescence spectroscopy on theA1Π ← X1Σ+transition in a cold, slow beam of AlCl molecules and probe the A1Π|v′ = 0,J′ = 1〉 state hyperfine structure for future laser cooling and trapping experiments. This work demonstrates that the production of tunable, watt-level DUV lasers is becoming routine for a variety of wavelength-specific applications in atomic, molecular and optical physics.more » « less
An official website of the United States government

