skip to main content


Title: Ultrafast 1  MHz vacuum-ultraviolet source via highly cascaded harmonic generation in negative-curvature hollow-core fibers

Vacuum-ultraviolet (VUV) light is critical for the study of molecules and materials, but the generation of femtosecond pulses in the VUV region at high repetition rates has proven difficult. Here we demonstrate the efficient generation of VUV light at megahertz repetition rates using highly cascaded four-wave mixing processes in a negative-curvature hollow-core fiber. Both even- and odd-order harmonics are generated up to the 15th harmonic (69 nm, 18.0 eV), with high energy resolution of∼<#comment/>40meV. In contrast to direct high harmonic generation, this highly cascaded harmonic generation process requires lower peak intensity and therefore can operate at higher repetition rates, driven by a robust∼<#comment/>10Wfiber-laser system in a compact setup. Additionally, we present numerical simulations that explore the fundamental capabilities and spatiotemporal dynamics of highly cascaded harmonic generation. This VUV source can enhance the capabilities of spectroscopies of molecular and quantum materials, such as photoionization mass spectrometry and time-, angle-, and spin-resolved photoemission.

 
more » « less
Award ID(s):
1734006
NSF-PAR ID:
10171146
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optica
Volume:
7
Issue:
7
ISSN:
2334-2536
Page Range / eLocation ID:
Article No. 832
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. High-harmonic generation (HHG) provides short-wavelength light that is useful for precision spectroscopy and probing ultrafast dynamics. We report efficient, phase-coherent harmonic generation up to the ninth order (333 nm) in chirped periodically poled lithium niobate waveguides driven by phase-stable≤<#comment/>12nJ, 100 fs pulses at 3 µm with 100 MHz repetition rate. A mid-infrared to ultraviolet-visible conversion efficiency as high as 10% is observed, among an overall 23% conversion of the fundamental to all harmonics. We verify the coherence of the harmonic frequency combs despite the complex highly nonlinear process. Accommodating the extreme spectral bandwidth, numerical simulations based on a single broadband envelope equation with only quadratic nonlinearity give estimates for the conversion efficiency within approximately 1 order of magnitude over a wide range of experimental parameters. From this comparison between theory and experiment, we identify a dimensionless parameter capturing the competition between three-wave mixing and group-velocity walk-off of the harmonics that governs the cascaded HHG physics. We also gain insights into spectral optimization via tuning the waveguide poling profile and pump pulse parameters. These results can inform cascaded HHG in a range of different platforms.

     
    more » « less
  2. A novel optical frequency division technique, called regenerative harmonic injection locking, is used to transfer the timing stability of an optical frequency comb with a repetition rate in the millimeter wave range (∼<#comment/>300GHz) to a chip-scale mode-locked laser with a∼<#comment/>10GHzrepetition rate. By doing so, the 300 GHz optical frequency comb is optically divided by a factor of30×<#comment/>to 10 GHz. The stability of the mode-locked laser after regenerative harmonic injection locking is∼<#comment/>10−<#comment/>12at 1 s with a1/τ<#comment/>trend. To facilitate optical frequency division, a coupled opto-electronic oscillator is implemented to assist the injection locking process. This technique is exceptionally power efficient, as it uses less than100µ<#comment/>Wof optical power to achieve stable locking.

     
    more » « less
  3. Thin-film lithium-niobate-on-insulator (LNOI) has emerged as a superior integrated-photonics platform for linear, nonlinear, and electro-optics. Here we combine quasi-phase-matching, dispersion engineering, and tight mode confinement to realize nonlinear parametric processes with both high efficiency and wide wavelength tunability. On a millimeter-long, Z-cut LNOI waveguide, we demonstrate efficient (1900±<#comment/>500%<#comment/>W−<#comment/>1cm−<#comment/>2) and highly tunable (−<#comment/>1.71nm/K) second-harmonic generation from 1530 to 1583 nm by type-0 quasi-phase-matching. Our technique is applicable to optical harmonic generation, quantum light sources, frequency conversion, and many other photonic information processes across visible to mid-IR spectral bands.

     
    more » « less
  4. We investigated the filamentation in air of 7 ps laser pulses of up to 200 mJ energy from a 1.03 μm-wavelength Yb:YAG laser at repetition rates up tof=1kHz. Interferograms of the wake generated show that while pulses in a train of repetition ratef=0.1kHzencounter a nearly unperturbed environment, atf=1kHz, a channel with an axial air density hole of∼<#comment/>20%<#comment/>is generated and maintained at all times by the cumulative effect of preceding laser pulses. Measurements atf=1kHzshow that the energy deposited decreases proportional to the air channel density depletion, becoming more pronounced as the repetition rate and pulse energy increase. Numerical simulations indicate that contrary to filaments generated by shorter duration pulses, the electron avalanche is the dominant energy loss mechanism during filamentation with 7 ps pulses. The results are of interest for the atmospheric propagation of joule-level picosecond pulses from Yb:YAG lasers, of which average powers now surpass 1 kW, and for channeling other directed energy beams.

     
    more » « less
  5. An optical parametric oscillator (OPO) is developed and characterized for the simultaneous generation of ultraviolet (UV) and near-UV nanosecond laser pulses for the single-shot Rayleigh scattering and planar laser-induced-fluorescence (PLIF) imaging of methylidyne (CH) and nitric oxide (NO) in turbulent flames. The OPO is pumped by a multichannel, 8-pulse Nd:YAG laser cluster that produces up to 225 mJ/pulse at 355 nm with pulse spacing of 100 µs. The pulsed OPO has a conversion efficiency of 9.6% to the signal wavelength of∼<#comment/>430nmwhen pumped by the multimode laser. Second harmonic conversion of the signal, with 3.8% efficiency, is used for the electronic excitation of the A-X (1,0) band of NO at∼<#comment/>215nm, while the residual signal at 430 nm is used for direct excitation of the A-X (0,0) band of the CH radical and elastic Rayleigh scattering. The section of the OPO signal wavelength for simultaneous CH and NO PLIF imaging is performed with consideration of the pulse energy, interference from the reactant and product species, and the fluorescence signal intensity. The excitation wavelengths of 430.7 nm and 215.35 nm are studied in a laminar, premixedCH4−<#comment/>H2−<#comment/>NH3–air flame. Single-shot CH and NO PLIF and Rayleigh scatter imaging is demonstrated in a turbulentCH4−<#comment/>H2−<#comment/>NH3diffusion flame using a high-speed intensified CMOS camera. Analysis of the complementary Rayleigh scattering and CH and NO PLIF enables identification and quantification of the high-temperature flame layers, the combustion product zones, and the fuel-jet core. Considerations for extension to simultaneous, 10-kHz-rate acquisition are discussed.

     
    more » « less