skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Impacts of Subsurface Urban Heat Islands on Civil Infrastructure
The ground beneath many urban areas worldwide is warming up due to so-called subsurface urban heat islands. Resulting from localized and large-scale drivers of heat in the underground, subsurface heat islands cause thermally induced deformations of key materials constituting civil infrastructure: soils, rocks, concrete, and systems thereof. Currently, the effects of thermally induced deformations driven by subsurface heat islands on the performance and durability of civil infrastructure remain poorly understood. This paper presents the results of a numerical and experimental study to shed light on the impacts of subsurface urban heat islands on civil infrastructure. The study is based on the first 3-D model of the subsurface characterizing the central business district of Chicago, called the Loop, which is affected by an underground climate change. This numerical model is used in combination with temperature data gathered through a sensing network deployed across the Loop district to run thermo-hydro-mechanical simulations of the current subsurface conditions, highlighting satisfactory capabilities to model reality. Based on the analysis of the current subsurface conditions, numerical predictions are run over fifty years to reproduce the influence of heat flows on the deformation of the subsurface. The obtained results indicate that subsurface urban heat islands can involve noteworthy and potentially detrimental effects on the performance and durability of civil infrastructure, requiring consideration in the design of such structures or mitigation through appropriate strategies. An analysis of such strategies is proposed and perspectives to hamper this silent hazard for urban areas are provided.  more » « less
Award ID(s):
2046586
PAR ID:
10417953
Author(s) / Creator(s):
Date Published:
Journal Name:
AGU Fall Meeting 2022
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Urban areas increasingly suffer from subsurface heat islands: an underground climate change responsible for environmental, public health, and transportation issues. Soils, rocks, and construction materials deform under the influence of temperature variations and excessive deformations can affect the performance of civil infrastructure. Here I explore if ground deformations caused by subsurface heat islands might affect civil infrastructure. The Chicago Loop district is used as a case study. A 3-D computer model informed by data collected via a network of temperature sensors is used to characterize the ground temperature variations, deformations, and displacements caused by underground climate change. These deformations and displacements are significant and, on a case-by-case basis, may be incompatible with the operational requirements of civil structures. Therefore, the impact of underground climate change on civil infrastructure should be considered in future urban planning strategies to avoid possible structural damage and malfunction. Overall, this work suggests that underground climate change can represent a silent hazard for civil infrastructure in the Chicago Loop and other urban areas worldwide, but also an opportunity to reutilize or minimize waste heat in the ground. 
    more » « less
  2. Urbanization tends to increase local lightning frequency (i.e. the ‘lightning enhancement’ effect). Despite many urban areas showing lightning enhancement, the prevalence of these effects is unknown and the drivers underlying these patterns are poorly quantified. We conducted a global assessment of cloud-to-ground lightning flashes (lightning strikes) across 349 cities to evaluate how the likelihood and magnitude of lightning enhancement vary with geography, climate, air pollution, topography and urban development. The likelihood of exhibiting lightning enhancement increased with higher temperature and precipitation in urban areas relative to their natural surroundings (i.e. urban heat islands and elevated urban precipitation), higher regional lightning strike frequency, greater distance to water bodies and lower elevations. Lightning enhancement was stronger in cities with conspicuous heat islands and elevated urban precipitation effects, higher lightning strike frequency, larger urban areas and lower latitudes. The particularly strong effects of elevated urban temperature and precipitation indicate that these are dominant mechanisms by which cities cause local lightning enhancement. 
    more » « less
  3. null (Ed.)
    Abstract. Infrastructure built on perennially frozen ice-richground relies heavily on thermally stable subsurface conditions. Climate-warming-induced deepening of ground thaw puts such infrastructure at risk offailure. For better assessing the risk of large-scale future damage to Arcticinfrastructure, improved strategies for model-based approaches are urgentlyneeded. We used the laterally coupled 1D heat conduction model CryoGrid3to simulate permafrost degradation affected by linear infrastructure. Wepresent a case study of a gravel road built on continuous permafrost (Daltonhighway, Alaska) and forced our model under historical and strong futurewarming conditions (following the RCP8.5 scenario). As expected, the presenceof a gravel road in the model leads to higher net heat flux entering theground compared to a reference run without infrastructure and thus a higherrate of thaw. Further, our results suggest that road failure is likely aconsequence of lateral destabilisation due to talik formation in the groundbeside the road rather than a direct consequence of a top-down thawing anddeepening of the active layer below the road centre. In line with previousstudies, we identify enhanced snow accumulation and ponding (both aconsequence of infrastructure presence) as key factors for increased soiltemperatures and road degradation. Using differing horizontal modelresolutions we show that it is possible to capture these key factors and theirimpact on thawing dynamics with a low number of lateral model units,underlining the potential of our model approach for use in pan-Arctic riskassessments. Our results suggest a general two-phase behaviour of permafrost degradation:an initial phase of slow and gradual thaw, followed by a strong increase inthawing rates after the exceedance of a critical ground warming. The timing ofthis transition and the magnitude of thaw rate acceleration differ stronglybetween undisturbed tundra and infrastructure-affected permafrost ground. Ourmodel results suggest that current model-based approaches which do notexplicitly take into account infrastructure in their designs are likely tostrongly underestimate the timing of future Arctic infrastructure failure. By using a laterally coupled 1D model to simulate linearinfrastructure, we infer results in line with outcomes from more complex 2Dand 3D models, but our model's computational efficiency allows us to accountfor long-term climate change impacts on infrastructure from permafrostdegradation. Our model simulations underline that it is crucial to considerclimate warming when planning and constructing infrastructure on permafrost asa transition from a stable to a highly unstable state can well occur withinthe service lifetime (about 30 years) of such a construction. Such atransition can even be triggered in the coming decade by climate change forinfrastructure built on high northern latitude continuous permafrost thatdisplays cold and relatively stable conditions today. 
    more » « less
  4. This article offers a conceptual understanding and easily applicable guidelines for sustainable urban infrastructure design by focusing on the demand for and supply of the services provided by seven urban infrastructure systems. For more than 10,000 years, cities have evolved continuously, often shaped by the challenges they had to face. Similarly, we can imagine that cities will have to evolve again in the future to address their current challenges. Specifically, urban infrastructure will need to adapt and use less energy and fewer resources while becoming more resilient. In this article, starting with a definition of sustainability, two urban infrastructure sustainability principles (SP) are introduced: (i) controlling the demand and (ii) increasing the supply within reason, which are then applied to seven urban infrastructure systems: water, electricity, district heating and cooling and natural gas, telecommunications, transport, solid waste, and buildings. From these principles, a four-step urban infrastructure design (UID) process is compiled that can be applied to any infrastructure project: (i) controlling the demand to reduce the need for new infrastructure, (ii) integrating a needed service within the current infrastructure, (iii) making new infrastructure multifunctional to provide for other infrastructure systems, and (iv) designing for specific interdependencies and decentralizing infrastructure if possible. Overall, by first recognizing that urban infrastructure systems are inherently integrated and interdependent, this article offers several strategies and guidelines to help design sustainable urban infrastructure systems. 
    more » « less
  5. Across coastal urban centres, underground spaces such as storage areas, transportation corridors, basement car parks, public facilities, retail & office and private spaces present a priority risk during flood events with respect to timely evacuation. However, these underground spaces are commonly not considered in urban flood prediction models, in many cases because the location and geometry of these underground spaces are often poorly known. In order to improve urban flood prediction models, various identified underground spaces have been included into the urban flood simulation presented in this paper. Here, the Software MIKE+ is adopted to simulate the coastal flood scenarios for the urban centre of the city of Belfast, Northern Ireland. In the simulation, unstructured triangular grids are used. Based on the numerical simulation, urban flood depth and flooding rates into the underground spaces can be obtained. Based on the comparison of simulated urban flood scenarios with and without underground spaces, the impact of underground spaces on street-level inundation and flood routing is evaluated. It can be observed that the inclusion of underground space has a significant impact on the flood routing process. Moreover, the underground spaces also present priority risk areas during flood events with respect to timely evacuation and to this end, underground spaces cannot be ignored in real urban flood prediction. The presented study can be used to increase communities’ emergency preparedness and flood resilience 
    more » « less