skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Consequences of permafrost degradation for Arctic infrastructure – bridging the model gap between regional and engineering scales
Abstract. Infrastructure built on perennially frozen ice-richground relies heavily on thermally stable subsurface conditions. Climate-warming-induced deepening of ground thaw puts such infrastructure at risk offailure. For better assessing the risk of large-scale future damage to Arcticinfrastructure, improved strategies for model-based approaches are urgentlyneeded. We used the laterally coupled 1D heat conduction model CryoGrid3to simulate permafrost degradation affected by linear infrastructure. Wepresent a case study of a gravel road built on continuous permafrost (Daltonhighway, Alaska) and forced our model under historical and strong futurewarming conditions (following the RCP8.5 scenario). As expected, the presenceof a gravel road in the model leads to higher net heat flux entering theground compared to a reference run without infrastructure and thus a higherrate of thaw. Further, our results suggest that road failure is likely aconsequence of lateral destabilisation due to talik formation in the groundbeside the road rather than a direct consequence of a top-down thawing anddeepening of the active layer below the road centre. In line with previousstudies, we identify enhanced snow accumulation and ponding (both aconsequence of infrastructure presence) as key factors for increased soiltemperatures and road degradation. Using differing horizontal modelresolutions we show that it is possible to capture these key factors and theirimpact on thawing dynamics with a low number of lateral model units,underlining the potential of our model approach for use in pan-Arctic riskassessments. Our results suggest a general two-phase behaviour of permafrost degradation:an initial phase of slow and gradual thaw, followed by a strong increase inthawing rates after the exceedance of a critical ground warming. The timing ofthis transition and the magnitude of thaw rate acceleration differ stronglybetween undisturbed tundra and infrastructure-affected permafrost ground. Ourmodel results suggest that current model-based approaches which do notexplicitly take into account infrastructure in their designs are likely tostrongly underestimate the timing of future Arctic infrastructure failure. By using a laterally coupled 1D model to simulate linearinfrastructure, we infer results in line with outcomes from more complex 2Dand 3D models, but our model's computational efficiency allows us to accountfor long-term climate change impacts on infrastructure from permafrostdegradation. Our model simulations underline that it is crucial to considerclimate warming when planning and constructing infrastructure on permafrost asa transition from a stable to a highly unstable state can well occur withinthe service lifetime (about 30 years) of such a construction. Such atransition can even be triggered in the coming decade by climate change forinfrastructure built on high northern latitude continuous permafrost thatdisplays cold and relatively stable conditions today.  more » « less
Award ID(s):
1928237 1927708 1832238
PAR ID:
10284638
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
The Cryosphere
Volume:
15
Issue:
5
ISSN:
1994-0424
Page Range / eLocation ID:
2451 to 2471
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Permafrost warming and degradation is well documented across the Arctic. However, observation‐ and model‐based studies typically consider thaw to occur at 0°C, neglecting the widespread occurrence of saline permafrost in coastal plain regions. In this study, we document rapid saline permafrost thaw below a shallow arctic lake. Over the 15‐year period, the lakebed subsided by 0.6 m as ice‐rich, saline permafrost thawed. Repeat transient electromagnetic measurements show that near‐surface bulk sediment electrical conductivity increased by 198% between 2016 and 2022. Analysis of wintertime Synthetic Aperture Radar satellite imagery indicates a transition from a bedfast to a floating ice lake with brackish water due to saline permafrost thaw. The regime shift likely contributed to the 65% increase in thermokarst lake lateral expansion rates. Our results indicate that thawing saline permafrost may be contributing to an increase in landscape change rates in the Arctic faster than anticipated. 
    more » « less
  2. Environmental impact assessments for new Arctic infrastructure do not adequately consider the likely long-term cumulative effects of climate change and infrastructure to landforms and vegetation in areas with ice-rich permafrost, due in part to lack of long-term environmental studies that monitor changes after the infrastructure is built. This case study examines long-term (1949–2020) climate- and road-related changes in a network of ice-wedge polygons, Prudhoe Bay Oilfield, Alaska. We studied four trajectories of change along a heavily traveled road and a relatively remote site. During 20 years prior to the oilfield development, the climate and landscapes changed very little. During 50 years after development, climate-related changes included increased numbers of thermokarst ponds, changes to ice-wedge-polygon morphology, snow distribution, thaw depths, dominant vegetation types, and shrub abundance. Road dust strongly affected plant-community structure and composition, particularly small forbs, mosses, and lichens. Flooding increased permafrost degradation, polygon center-trough elevation contrasts, and vegetation productivity. It was not possible to isolate infrastructure impacts from climate impacts, but the combined datasets provide unique insights into the rate and extent of ecological disturbances associated with infrastructure-affected landscapes under decades of climate warming. We conclude with recommendations for future cumulative impact assessments in areas with ice-rich permafrost. 
    more » « less
  3. Climate warming in the Arctic is thawing previously frozen soil (permafrost). Permafrost thaw alters landscape hydrology and increases weathering rates, which can increase the delivery of solutes to adjacent waters. Long-term river monitoring of the Kuparuk River (North Slope, Alaska, USA) confirms significant increases in solutes that are indicative of thawing permafrost. However, there is no evidence of an increase in total phosphorus (TP) or soluble reactive phosphorus (SRP), the nutrient that limits primary production in this and similar rivers in the region. Here, we show that Mehlich-3 extractable iron (Fe) and aluminum (Al) impart high P biogeochemical sorption capacities across a range of landscape features that we would expect to promote lateral movement of water and solutes to headwater streams in our study watershed. Reanalysis of a recently published pan-Arctic soils database suggests that this high P sorption capacity could be common in other parts of the Arctic region. We conclude that while warming-induced permafrost thaw may increase the potential for P mobility in our watershed, simultaneous increases in pedogenic secondary Fe and Al minerals may continue to retain P in these soils and limit biological productivity in the adjacent river. We suggest that similar interactions may occur in other areas of the Arctic where comparable biogeochemical conditions prevail. 
    more » « less
  4. Abstract Permafrost thaw and thermokarst development pose urgent challenges to Arctic communities, threatening infrastructure and essential services. This study examines the reciprocal impacts of permafrost degradation and infrastructure in Point Lay (Kali), Alaska, drawing on field data from ∼60 boreholes, measured and modeled ground temperature records, remote sensing analysis, and community interviews. Field campaigns from 2022–2024 reveal widespread thermokarst development and ground subsidence driven by the thaw of ice-rich permafrost. Borehole analysis confirms excess-ice contents averaging ∼40%, with syngenetic ice wedges extending over 12 m deep. Measured and modeled ground temperature data indicate a warming trend, with increasing mean annual ground temperatures and active layer thickness (ALT). Since 1949, modeled ALTs have generally deepened, with a marked shift toward consistently thicker ALTs in the 21st century. Remote sensing shows ice wedge thermokarst expanded from <5% in 1949 to >60% in developed areas by 2019, with thaw rates increasing tenfold between 1974 and 2019. In contrast, adjacent, undisturbed tundra exhibited more consistent thermokarst expansion (∼0.2% yr−1), underscoring the amplifying role of infrastructure, surface disturbance, and climate change. Community interviews reveal the lived consequences of permafrost degradation, including structural damage to homes, failing utilities, and growing dependence on alternative water and wastewater strategies. Engineering recommendations include deeper pile foundations, targeted ice wedge stabilization, aboveground utilities, enhanced snow management strategies, and improved drainage to mitigate ongoing infrastructure issues. As climate change accelerates permafrost thaw across the Arctic, this study highlights the need for integrated, community-driven adaptation strategies that blend geocryological research, engineering solutions, and local and Indigenous knowledge. 
    more » « less
  5. Abstract Climate change has adverse impacts on Arctic natural ecosystems and threatens northern communities by disrupting subsistence practices, limiting accessibility, and putting built infrastructure at risk. In this paper, we analyze spatial patterns of permafrost degradation and associated risks to built infrastructure due to loss of bearing capacity and thaw subsidence in permafrost regions of the Arctic. Using a subset of three Coupled Model Intercomparison Project 6 models under SSP245 and 585 scenarios we estimated changes in permafrost bearing capacity and ground subsidence between two reference decades: 2015–2024 and 2055–2064. Using publicly available infrastructure databases we identified roads, railways, airport runways, and buildings at risk of permafrost degradation and estimated country-specific costs associated with damage to infrastructure. The results show that under the SSP245 scenario 29% of roads, 23% of railroads, and 11% of buildings will be affected by permafrost degradation, costing $182 billion to the Arctic states by mid-century. Under the SSP585 scenario, 44% of roads, 34% of railroads, and 17% of buildings will be affected with estimated cost of $276 billion, with airport runways adding an additional $0.5 billion. Russia is expected to have the highest burden of costs, ranging from $115 to $169 billion depending on the scenario. Limiting global greenhouse gas emissions has the potential to significantly decrease the costs of projected damages in Arctic countries, especially in Russia. The approach presented in this study underscores the substantial impacts of climate change on infrastructure and can assist to develop adaptation and mitigation strategies in Arctic states. 
    more » « less