skip to main content


Title: Consequences of permafrost degradation for Arctic infrastructure – bridging the model gap between regional and engineering scales
Abstract. Infrastructure built on perennially frozen ice-richground relies heavily on thermally stable subsurface conditions. Climate-warming-induced deepening of ground thaw puts such infrastructure at risk offailure. For better assessing the risk of large-scale future damage to Arcticinfrastructure, improved strategies for model-based approaches are urgentlyneeded. We used the laterally coupled 1D heat conduction model CryoGrid3to simulate permafrost degradation affected by linear infrastructure. Wepresent a case study of a gravel road built on continuous permafrost (Daltonhighway, Alaska) and forced our model under historical and strong futurewarming conditions (following the RCP8.5 scenario). As expected, the presenceof a gravel road in the model leads to higher net heat flux entering theground compared to a reference run without infrastructure and thus a higherrate of thaw. Further, our results suggest that road failure is likely aconsequence of lateral destabilisation due to talik formation in the groundbeside the road rather than a direct consequence of a top-down thawing anddeepening of the active layer below the road centre. In line with previousstudies, we identify enhanced snow accumulation and ponding (both aconsequence of infrastructure presence) as key factors for increased soiltemperatures and road degradation. Using differing horizontal modelresolutions we show that it is possible to capture these key factors and theirimpact on thawing dynamics with a low number of lateral model units,underlining the potential of our model approach for use in pan-Arctic riskassessments. Our results suggest a general two-phase behaviour of permafrost degradation:an initial phase of slow and gradual thaw, followed by a strong increase inthawing rates after the exceedance of a critical ground warming. The timing ofthis transition and the magnitude of thaw rate acceleration differ stronglybetween undisturbed tundra and infrastructure-affected permafrost ground. Ourmodel results suggest that current model-based approaches which do notexplicitly take into account infrastructure in their designs are likely tostrongly underestimate the timing of future Arctic infrastructure failure. By using a laterally coupled 1D model to simulate linearinfrastructure, we infer results in line with outcomes from more complex 2Dand 3D models, but our model's computational efficiency allows us to accountfor long-term climate change impacts on infrastructure from permafrostdegradation. Our model simulations underline that it is crucial to considerclimate warming when planning and constructing infrastructure on permafrost asa transition from a stable to a highly unstable state can well occur withinthe service lifetime (about 30 years) of such a construction. Such atransition can even be triggered in the coming decade by climate change forinfrastructure built on high northern latitude continuous permafrost thatdisplays cold and relatively stable conditions today.  more » « less
Award ID(s):
1928237 1927708 1832238
NSF-PAR ID:
10284638
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
The Cryosphere
Volume:
15
Issue:
5
ISSN:
1994-0424
Page Range / eLocation ID:
2451 to 2471
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Permafrost warming and degradation is well documented across the Arctic. However, observation‐ and model‐based studies typically consider thaw to occur at 0°C, neglecting the widespread occurrence of saline permafrost in coastal plain regions. In this study, we document rapid saline permafrost thaw below a shallow arctic lake. Over the 15‐year period, the lakebed subsided by 0.6 m as ice‐rich, saline permafrost thawed. Repeat transient electromagnetic measurements show that near‐surface bulk sediment electrical conductivity increased by 198% between 2016 and 2022. Analysis of wintertime Synthetic Aperture Radar satellite imagery indicates a transition from a bedfast to a floating ice lake with brackish water due to saline permafrost thaw. The regime shift likely contributed to the 65% increase in thermokarst lake lateral expansion rates. Our results indicate that thawing saline permafrost may be contributing to an increase in landscape change rates in the Arctic faster than anticipated.

     
    more » « less
  2. Environmental impact assessments for new Arctic infrastructure do not adequately consider the likely long-term cumulative effects of climate change and infrastructure to landforms and vegetation in areas with ice-rich permafrost, due in part to lack of long-term environmental studies that monitor changes after the infrastructure is built. This case study examines long-term (1949–2020) climate- and road-related changes in a network of ice-wedge polygons, Prudhoe Bay Oilfield, Alaska. We studied four trajectories of change along a heavily traveled road and a relatively remote site. During 20 years prior to the oilfield development, the climate and landscapes changed very little. During 50 years after development, climate-related changes included increased numbers of thermokarst ponds, changes to ice-wedge-polygon morphology, snow distribution, thaw depths, dominant vegetation types, and shrub abundance. Road dust strongly affected plant-community structure and composition, particularly small forbs, mosses, and lichens. Flooding increased permafrost degradation, polygon center-trough elevation contrasts, and vegetation productivity. It was not possible to isolate infrastructure impacts from climate impacts, but the combined datasets provide unique insights into the rate and extent of ecological disturbances associated with infrastructure-affected landscapes under decades of climate warming. We conclude with recommendations for future cumulative impact assessments in areas with ice-rich permafrost. 
    more » « less
  3. Abstract

    Northern circumpolar permafrost thaw affects global carbon cycling, as large amounts of stored soil carbon becomes accessible to microbial breakdown under a warming climate. The magnitude of carbon release is linked to the extent of permafrost thaw, which is locally variable and controlled by soil thermodynamics. Soil thermodynamic properties, such as thermal diffusivity, govern the reactivity of the soil‐atmosphere thermal gradient, and are controlled by soil composition and drainage. In order to project permafrost thaw for an Alaskan tundra experimental site, we used seven years of site data to calibrate a soil thermodynamic model using a data assimilation technique. The model reproduced seasonal and interannual temperature dynamics for shallow (5–40 cm) and deep soil layers (2–4 m), and simulations of seasonal thaw depth closely matched observed data. The model was then used to project permafrost thaw at the site to the year 2100 using climate forcing data for three future climate scenarios (RCP 4.5, 6.0, and 8.5). Minimal permafrost thawing occurred until mean annual air temperatures rose above the freezing point, after which we measured over a 1 m increase in thaw depth for every 1 °C rise in mean annual air temperature. Under no projected warming scenario was permafrost remaining in the upper 3 m of soil by 2100. We demonstrated an effective data assimilation method that optimizes parameterization of a soil thermodynamic model. The sensitivity of local permafrost to climate warming illustrates the vulnerability of sub‐Arctic tundra ecosystems to significant and rapid soil thawing.

     
    more » « less
  4. Abstract

    Accelerated warming of the Arctic can affect the global climate system by thawing permafrost and exposing organic carbon in soils to decompose and release greenhouse gases into the atmosphere. We used a process-based biosphere model (DVM-DOS-TEM) designed to simulate biophysical and biogeochemical interactions between the soil, vegetation, and atmosphere. We varied soil and environmental parameters to assess the impact on cryohydrological and biogeochemical outputs in the model. We analyzed the responses of ecosystem carbon balances to permafrost thaw by running site-level simulations at two long-term tundra ecological monitoring sites in Alaska: Eight Mile Lake (EML) and Imnavait Creek Watershed (IMN), which are characterized by similar tussock tundra vegetation but differing soil drainage conditions and climate. Model outputs showed agreement with field observations at both sites for soil physical properties and ecosystem CO2fluxes. Model simulations of Net Ecosystem Exchange (NEE) showed an overestimation during the frozen season (higher CO2emissions) at EML with a mean NEE of 26.98 ± 4.83 gC/m2/month compared to observational mean of 22.01 ± 5.67 gC/m2/month, and during the fall months at IMN, with a modeled mean of 19.21 ± 7.49 gC/m2/month compared to observation mean of 11.9 ± 4.45 gC/m2/month. Our results underscore the importance of representing the impact of soil drainage conditions on the thawing of permafrost soils, particularly poorly drained soils, which will drive the magnitude of carbon released at sites across the high-latitude tundra. These findings can help improve predictions of net carbon releases from thawing permafrost, ultimately contributing to a better understanding of the impact of Arctic warming on the global climate system.

     
    more » « less
  5. Abstract

    The thawing of permafrost in the Arctic has led to an increase in coastal land loss, flooding, and ground subsidence, seriously threatening civil infrastructure and coastal communities. However, a lack of tools for synthetic hazard assessment of the Arctic coast has hindered effective response measures. We developed a holistic framework, the Arctic Coastal Hazard Index (ACHI), to assess the vulnerability of Arctic coasts to permafrost thawing, coastal erosion, and coastal flooding. We quantified the coastal permafrost thaw potential (PTP) through regional assessment of thaw subsidence using ground settlement index. The calculations of the ground settlement index involve utilizing projections of permafrost conditions, including future regional mean annual ground temperature, active layer thickness, and talik thickness. The predicted thaw subsidence was validated through a comparison with observed long-term subsidence data. The ACHI incorporates the PTP into seven physical and ecological variables for coastal hazard assessment: shoreline type, habitat, relief, wind exposure, wave exposure, surge potential, and sea-level rise. The coastal hazard assessment was conducted for each 1 km2coastline of North Slope Borough, Alaska in the 2060s under the Representative Concentration Pathway 4.5 and 8.5 forcing scenarios. The areas that are prone to coastal hazards were identified by mapping the distribution pattern of the ACHI. The calculated coastal hazards potential was subjected to validation by comparing it with the observed and historical long-term coastal erosion mean rates. This framework for Arctic coastal assessment may assist policy and decision-making for adaptation, mitigation strategies, and civil infrastructure planning.

     
    more » « less