skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 12 until 2:00 AM ET on Saturday, July 13 due to maintenance. We apologize for the inconvenience.


Title: Fair and Efficient Allocations of Chores under Bivalued Preferences
We study the problem of fair and efficient allocation of a set of indivisible chores to agents with additive cost functions. We consider the popular fairness notion of envy-freeness up to one good (EF1) with the efficiency notion of Pareto-optimality (PO). While it is known that EF1+PO allocations exists and can be computed in pseudo-polynomial time in the case of goods, the same problem is open for chores. Our first result is a strongly polynomial-time algorithm for computing an EF1+PO allocation for bivalued instances, where agents have (at most) two disutility values for the chores. To the best of our knowledge, this is the first non-trivial class of chores to admit an EF1+PO allocation and an efficient algorithm for its computation. We also study the problem of computing an envy-free (EF) and PO allocation for the case of divisible chores. While the existence of EF+PO allocation is known via competitive equilibrium with equal incomes, its efficient computation is open. Our second result shows that for bivalued instances, an EF+PO allocation can be computed in strongly polynomial-time.  more » « less
Award ID(s):
1942321
NSF-PAR ID:
10417958
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
Volume:
36
Issue:
5
ISSN:
2159-5399
Page Range / eLocation ID:
5043 to 5050
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study fair division of indivisible chores among n agents with additive disutility functions. Two well-studied fairness notions for indivisible items are envy-freeness up to one/any item (EF1/EFX) and the standard notion of economic efficiency is Pareto optimality (PO). There is a noticeable gap between the results known for both EF1 and EFX in the goods and chores settings. The case of chores turns out to be much more challenging. We reduce this gap by providing slightly relaxed versions of the known results on goods for the chores setting. Interestingly, our algorithms run in polynomial time, unlike their analogous versions in the goods setting.We introduce the concept of k surplus in the chores setting which means that up to k more chores are allocated to the agents and each of them is a copy of an original chore. We present a polynomial-time algorithm which gives EF1 and PO allocations with n-1 surplus.We relax the notion of EFX slightly and define tEFX which requires that the envy from agent i to agent j is removed upon the transfer of any chore from the i's bundle to j's bundle. We give a polynomial-time algorithm that in the chores case for 3 agents returns an allocation which is either proportional or tEFX. Note that proportionality is a very strong criterion in the case of indivisible items, and hence both notions we guarantee are desirable.

     
    more » « less
  2. We study the fair allocation of mixture of indivisible goods and chores under lexicographic preferences---a subdomain of additive preferences. A prominent fairness notion for allocating indivisible items is envy-freeness up to any item (EFX). Yet, its existence and computation has remained a notable open problem. By identifying a class of instances with terrible chores, we show that determining the existence of an EFX allocation is NP-complete. This result immediately implies the intractability of EFX under additive preferences. Nonetheless, we propose a natural subclass of lexicographic preferences for which an EFX and Pareto optimal (PO) allocation is guaranteed to exist and can be computed efficiently for any mixed instance. Focusing on two weaker fairness notions, we investigate finding EF1 and Pareto optimal allocations for special instances with terrible chores, and show that MMS and PO allocations can be computed efficiently for any mixed instance with lexicographic preferences. 
    more » « less
  3. We study the problem of fairly and efficiently allocating indivisible chores among agents with additive disutility functions. We consider the widely used envy-based fairness properties of EF1 and EFX in conjunction with the efficiency property of fractional Pareto-optimality (fPO). Existence (and computation) of an allocation that is simultaneously EF1/EFX and fPO are challenging open problems, and we make progress on both of them. We show the existence of an allocation that is- EF1 + fPO, when there are three agents,- EF1 + fPO, when there are at most two disutility functions,- EFX + fPO, for three agents with bivalued disutility functions.These results are constructive, based on strongly polynomial-time algorithms. We also investigate non-existence and show that an allocation that is EFX+fPO need not exist, even for two agents.

     
    more » « less
  4. We study the fair and efficient allocation of a set of indivisible goods among agents, where each good has several copies, and each agent has an additively separable concave valuation function with a threshold. These valuations capture the property of diminishing marginal returns, and they are more general than the well-studied case of additive valuations. We present a polynomial-time algorithm that approximates the optimal Nash social welfare (NSW) up to a factor of e1/e ≈ 1.445. This matches with the state-of-the-art approximation factor for additive valuations. The computed allocation also satisfies the popular fairness guarantee of envy-freeness up to one good (EF1) up to a factor of 2 + ε. For instances without thresholds, it is also approximately Pareto-optimal. For instances satisfying a large market property, we show an improved approximation factor. Lastly, we show that the upper bounds on the optimal NSW introduced in Cole and Gkatzelis (2018) and Barman et al. (2018) have the same value. 
    more » « less
  5. We study fair allocation of indivisible goods and chores among agents with lexicographic preferences---a subclass of additive valuations. In sharp contrast to the goods-only setting, we show that an allocation satisfying envy-freeness up to any item (EFX) could fail to exist for a mixture of objective goods and chores. To our knowledge, this negative result provides the first counterexample for EFX over (any subdomain of) additive valuations. To complement this non-existence result, we identify a class of instances with (possibly subjective) mixed items where an EFX and Pareto optimal allocation always exists and can be efficiently computed. When the fairness requirement is relaxed to maximin share (MMS), we show positive existence and computation for any mixed instance. More broadly, our work examines the existence and computation of fair and efficient allocations both for mixed items as well as chores-only instances, and highlights the additional difficulty of these problems vis-à-vis their goods-only counterparts. 
    more » « less