skip to main content


This content will become publicly available on May 9, 2024

Title: adaPARL: Adaptive Privacy-Aware Reinforcement Learning for Sequential Decision Making Human-in-the-Loop Systems
Reinforcement learning (RL) presents numerous benefits compared to rule-based approaches in various applications. Privacy concerns have grown with the widespread use of RL trained with privacy- sensitive data in IoT devices, especially for human-in-the-loop systems. On the one hand, RL methods enhance the user experience by trying to adapt to the highly dynamic nature of humans. On the other hand, trained policies can leak the user’s private information. Recent attention has been drawn to designing privacy-aware RL algorithms while maintaining an acceptable system utility. A central challenge in designing privacy-aware RL, especially for human-in-the-loop systems, is that humans have intrinsic variability, and their preferences and behavior evolve. The effect of one privacy leak mitigation can differ for the same human or across different humans over time. Hence, we can not design one fixed model for privacy-aware RL that fits all. To that end, we propose adaPARL, an adaptive approach for privacy-aware RL, especially for human-in-the-loop IoT systems. adaPARL provides a personalized privacy-utility trade-off depend- ing on human behavior and preference. We validate the proposed adaPARL on two IoT applications, namely (i) Human-in-the-Loop Smart Home and (ii) Human-in-the-Loop Virtual Reality (VR) Smart Classroom. Results obtained on these two applications validate the generality of adaPARL and its ability to provide a personalized privacy-utility trade-off. On average, adaPARL improves the utility by 57% while reducing the privacy leak by 23% on average.  more » « less
Award ID(s):
2105084
NSF-PAR ID:
10417999
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IoTDI '23: Proceedings of the 8th ACM/IEEE Conference on Internet of Things Design and Implementation
Page Range / eLocation ID:
262 to 274
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Rapid advancements in Artificial Intelligence have shifted the focus from traditional human-directed robots to fully autonomous ones that do not require explicit human control. These are commonly referred to as Human-on-the-Loop (HotL) systems. Transparency of HotL systems necessitates clear explanations of autonomous behavior so that humans are aware of what is happening in the environment and can understand why robots behave in a certain way. However, in complex multi-robot environments, especially those in which the robots are autonomous and mobile, humans may struggle to maintain situational awareness. Presenting humans with rich explanations of autonomous behavior tends to overload them with lots of information and negatively affect their understanding of the situation. Therefore, explaining the autonomous behavior of multiple robots creates a design tension that demands careful investigation. This paper examines the User Interface (UI) design trade-offs associated with providing timely and detailed explanations of autonomous behavior for swarms of small Unmanned Aerial Systems (sUAS) or drones. We analyze the impact of UI design choices on human awareness of the situation. We conducted multiple user studies with both inexperienced and expert sUAS operators to present our design solution and initial guidelines for designing the HotL multi-sUAS interface. 
    more » « less
  2. Automotive is becoming more and more sensor-equipped. Collision avoidance, lane departure warning, and self-parking are examples of applications becoming possible with the adoption of more sensors in the automotive industry. Moreover, the driver is now equipped with sensory systems like wearables and mobile phones. This rich sensory environment and the real-time streaming of contextual data from the vehicle make the human factor integral in the loop of computation. By integrating the human’s behavior and reaction into the advanced driver-assistance systems (ADAS), the vehicles become a more context-aware entity. Hence, we propose MAConAuto, a framework that helps design human-in-the-loop automotive systems by providing a common platform to engage the rich sensory systems in wearables and mobile to have context-aware applications. By personalizing the context adaptation in automotive applications, MAConAuto learns the behavior and reactions of the human to adapt to the personalized preference where interventions are continuously tuned using Reinforcement Learning. Our general framework satisfies three main design properties, adaptability, generalizability, and conflict resolution. We show how MAConAuto can be used as a framework to design two applications as human-centric applications, forward collision warning, and vehicle HVAC system with negligible time overhead to the average human response time. 
    more » « less
  3. The Internet of Things (IoT) is a vast collection of interconnected sensors, devices, and services that share data and information over the Internet with the objective of leveraging multiple information sources to optimize related systems. The technologies associated with the IoT have significantly improved the quality of many existing applications by reducing costs, improving functionality, increasing access to resources, and enhancing automation. The adoption of IoT by industries has led to the next industrial revolution: Industry 4.0. The rise of the Industrial IoT (IIoT) promises to enhance factory management, process optimization, worker safety, and more. However, the rollout of the IIoT is not without significant issues, and many of these act as major barriers that prevent fully achieving the vision of Industry 4.0. One major area of concern is the security and privacy of the massive datasets that are captured and stored, which may leak information about intellectual property, trade secrets, and other competitive knowledge. As a way forward toward solving security and privacy concerns, we aim in this paper to identify common input-output (I/O) design patterns that exist in applications of the IIoT. These design patterns enable constructing an abstract model representation of data flow semantics used by such applications, and therefore better understand how to secure the information related to IIoT operations. In this paper, we describe communication protocols and identify common I/O design patterns for IIoT applications with an emphasis on data flow in edge devices, which, in the industrial control system (ICS) setting, are most often involved in process control or monitoring. 
    more » « less
  4. Power grids are undergoing major changes due to rapid growth in renewable energy and improvements in battery technology. Prompted by the increasing complexity of power systems, decentralized IoT solutions are emerging, which arrange local communities into transactive microgrids. The core functionality of these solutions is to provide mechanisms for matching producers with consumers while ensuring system safety. However, there are multiple challenges that these solutions still face: privacy, trust, and resilience. The privacy challenge arises because the time series of production and consumption data for each participant is sensitive and may be used to infer personal information. Trust is an issue because a producer or consumer can renege on the promised energy transfer. Providing resilience is challenging due to the possibility of failures in the infrastructure that is required to support these market based solutions. In this paper, we develop a rigorous solution for transactive microgrids that addresses all three challenges by providing an innovative combination of MILP solvers, smart contracts, and publish-subscribe middleware within a framework of a novel distributed application platform, called Resilient Information Architecture Platform for Smart Grid. Towards this purpose, we describe the key architectural concepts, including fault tolerance, and show the trade-off between market efficiency and resource requirements. 
    more » « less
  5. Modern Internet of Things (IoT) applications, from contextual sensing to voice assistants, rely on ML-based training and serving systems using pre-trained models to render predictions. However, real-world IoT environments are diverse, with rich IoT sensors and need ML models to be personalized for each setting using relatively less training data. Most existing general-purpose ML systems are optimized for specific and dedicated hardware resources and do not adapt to changing resources and different IoT application requirements. To address this gap, we propose MLIoT, an end-to-end Machine Learning System tailored towards supporting the entire lifecycle of IoT applications. MLIoT adapts to different IoT data sources, IoT tasks, and compute resources by automatically training, optimizing, and serving models based on expressive applicationspecific policies. MLIoT also adapts to changes in IoT environments or compute resources by enabling re-training, and updating models served on the fly while maintaining accuracy and performance. Our evaluation across a set of benchmarks show that MLIoT can handle multiple IoT tasks, each with individual requirements, in a scalable manner while maintaining high accuracy and performance. We compare MLIoT with two state-of-the-art hand-tuned systems and a commercial ML system showing that MLIoT improves accuracy from 50% - 75% while reducing or maintaining latency. 
    more » « less