skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evolutionary scaling of maximum growth rate with organism size
Abstract Data from nearly 1000 species reveal the upper bound to rates of biomass production achievable by natural selection across the Tree of Life. For heterotrophs, maximum growth rates scale positively with organism size in bacteria but negatively in eukaryotes, whereas for phototrophs, the scaling is negligible for cyanobacteria and weakly negative for eukaryotes. These results have significant implications for understanding the bioenergetic consequences of the transition from prokaryotes to eukaryotes, and of the expansion of some groups of the latter into multicellularity. The magnitudes of the scaling coefficients for eukaryotes are significantly lower than expected under any proposed physical-constraint model. Supported by genomic, bioenergetic, and population-genetic data and theory, an alternative hypothesis for the observed negative scaling in eukaryotes postulates that growth-diminishing mutations with small effects passively accumulate with increasing organism size as a consequence of associated increases in the power of random genetic drift. In contrast, conditional on the structural and functional features of ribosomes, natural selection has been able to promote bacteria with the fastest possible growth rates, implying minimal conflicts with both bioenergetic constraints and random genetic drift. If this extension of the drift-barrier hypothesis is correct, the interpretations of comparative studies of biological traits that have traditionally ignored differences in population-genetic environments will require revisiting.  more » « less
Award ID(s):
2119963 1927159
PAR ID:
10418027
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Scientific Reports
Volume:
12
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Owing to advances in genome sequencing, genome stability has become one of the most scrutinized cellular traits across the Tree of Life. Despite its centrality to all things biological, the mutation rate (per nucleotide site per generation) ranges over three orders of magnitude among species and several‐fold within individual phylogenetic lineages. Within all major organismal groups, mutation rates scale negatively with the effective population size of a species and with the amount of functional DNA in the genome. This relationship is most parsimoniously explained by the drift‐barrier hypothesis, which postulates that natural selection typically operates to reduce mutation rates until further improvement is thwarted by the power of random genetic drift. Despite this constraint, the molecular mechanisms underlying DNA replication fidelity and repair are free to wander, provided the performance of the entire system is maintained at the prevailing level. The evolutionary flexibility of the mutation rate bears on the resolution of several prior conundrums in phylogenetic and population‐genetic analysis and raises challenges for future applications in these areas. 
    more » « less
  2. Abstract The expression of genomically-encoded information is not error-free. Transcript-error rates are dramatically higher than DNA-level mutation rates, and despite their transient nature, the steady-state load of such errors must impose some burden on cellular performance. However, a broad perspective on the degree to which transcript-error rates are constrained by natural selection and diverge among lineages remains to be developed. Here, we present a genome-wide analysis of transcript-error rates across the Tree of Life using a modified rolling-circle sequencing method, revealing that the range in error rates is remarkably narrow across diverse species. Transcript errors tend to be randomly distributed, with little evidence supporting local control of error rates associated with gene-expression levels. A majority of transcript errors result in missense errors if translated, and as with a fraction of nonsense transcript errors, these are underrepresented relative to random expectations, suggesting the existence of mechanisms for purging some such errors. To quantitatively understand how natural selection and random genetic drift might shape transcript-error rates across species, we present a model based on cell biology and population genetics, incorporating information on cell volume, proteome size, average degree of exposure of individual errors, and effective population size. However, while this model provides a framework for understanding the evolution of this highly conserved trait, as currently structured it explains only 20% of the variation in the data, suggesting a need for further theoretical work in this area. 
    more » « less
  3. Abstract Effective population size affects the efficacy of selection, rate of evolution by drift and neutral diversity levels. When species are subdivided into multiple populations connected by gene flow, evolutionary processes can depend on global or local effective population sizes. Theory predicts that high levels of diversity might be maintained by gene flow, even very low levels of gene flow, consistent with species long‐term effective population size, but tests of this idea are mostly lacking. Here, we show thatLycaeidesbutterfly populations maintain low contemporary (variance) effective population sizes (e.g. ~200 individuals) and thus evolve rapidly by genetic drift. However, populations harboured high levels of genetic diversity consistent with an effective population size several orders of magnitude larger. We hypothesized that the differences in the magnitude and variability of contemporary versus long‐term effective population sizes were caused by gene flow of sufficient magnitude to maintain diversity but only subtly affect evolution on generational timescales. Consistent with this hypothesis, we detected low but nontrivial gene flow among populations. Furthermore, using short‐term population‐genomic time‐series data, we documented patterns consistent with predictions from this hypothesis, including a weak but detectable excess of evolutionary change in the direction of the mean (migrant gene pool) allele frequencies across populations and consistency in the direction of allele frequency change over time. The documented decoupling of diversity levels and short‐term change by drift inLycaeideshas implications for our understanding of contemporary evolution and the maintenance of genetic variation in the wild. 
    more » « less
  4. All life forms depend on the conversion of energy into biomass used in growth and reproduction. For unicellular heterotrophs, the energetic cost associated with building a cell scales slightly sublinearly with cell weight. However, observations on multipleDaphniaspecies and numerous other metazoans suggest that although a similar size-specific scaling is retained in multicellular heterotrophs, there is a quantum leap in the energy required to build a replacement soma, presumably owing to the added investment in nonproductive features such as cell adhesion, support tissue, and intercellular communication and transport. Thus, any context-dependent ecological advantages that accompany the evolution of multicellularity come at a high baseline bioenergetic cost. At the phylogenetic level, for both unicellular and multicellular eukaryotes, the energetic expense per unit biomass produced declines with increasing adult size of a species, but there is a countergradient scaling within the developmental trajectories of individual metazoan species, with the cost of biomass production increasing with size. Translation of the results into the universal currency of adenosine triphosphate (ATP) hydrolyses provides insight into the demands on the electron-transport/ATP-synthase machinery per organism and on the minimum doubling times for biomass production imposed by the costs of duplicating the energy-producing infrastructure. 
    more » « less
  5. Abstract BackgroundMitochondrial genes and nuclear genes cooperate closely to maintain the functions of mitochondria, especially in the oxidative phosphorylation (OXPHOS) pathway. However, mitochondrial genes among arthropod lineages have dramatic evolutionary rate differences. Haplodiploid arthropods often show fast-evolving mitochondrial genes. One hypothesis predicts that the small effective population size of haplodiploid species could enhance the effect of genetic drift leading to higher substitution rates in mitochondrial and nuclear genes. Alternatively, positive selection or compensatory changes in nuclear OXPHOS genes could lead to the fast-evolving mitochondrial genes. However, due to the limited number of arthropod genomes, the rates of evolution for nuclear genes in haplodiploid species, besides hymenopterans, are largely unknown. To test these hypotheses, we used data from 76 arthropod genomes, including 5 independently evolved haplodiploid lineages, to estimate the evolutionary rates and patterns of gene family turnover of mitochondrial and nuclear genes. ResultsWe show that five haplodiploid lineages tested here have fast-evolving mitochondrial genes and fast-evolving nuclear genes related to mitochondrial functions, while nuclear genes not related to mitochondrion showed no significant evolutionary rate differences. Among hymenopterans, bees and ants show faster rates of molecular evolution in mitochondrial genes and mitochondrion-related nuclear genes than sawflies and wasps. With genome data, we also find gene family expansions and contractions in mitochondrion-related genes of bees and ants. ConclusionsOur results reject the small population size hypothesis in haplodiploid species. A combination of positive selection and compensatory changes could lead to the observed patterns in haplodiploid species. The elevated evolutionary rates in OXPHOS complex 2 genes of bees and ants suggest a unique evolutionary history of social hymenopterans. 
    more » « less