skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The divergence of mutation rates and spectra across the Tree of Life
Abstract Owing to advances in genome sequencing, genome stability has become one of the most scrutinized cellular traits across the Tree of Life. Despite its centrality to all things biological, the mutation rate (per nucleotide site per generation) ranges over three orders of magnitude among species and several‐fold within individual phylogenetic lineages. Within all major organismal groups, mutation rates scale negatively with the effective population size of a species and with the amount of functional DNA in the genome. This relationship is most parsimoniously explained by the drift‐barrier hypothesis, which postulates that natural selection typically operates to reduce mutation rates until further improvement is thwarted by the power of random genetic drift. Despite this constraint, the molecular mechanisms underlying DNA replication fidelity and repair are free to wander, provided the performance of the entire system is maintained at the prevailing level. The evolutionary flexibility of the mutation rate bears on the resolution of several prior conundrums in phylogenetic and population‐genetic analysis and raises challenges for future applications in these areas.  more » « less
Award ID(s):
2119963
PAR ID:
10468602
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
EMBO reports
Volume:
24
Issue:
10
ISSN:
1469-221X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Mutation rate in the nuclear genome differs between sexes, with males contributing more mutations than females to their offspring. The male-biased mutation rates in the nuclear genome is most likely to be driven by a higher number of cell divisions in spermatogenesis than in oogenesis, generating more opportunities for DNA replication errors. However, it remains unknown whether male-biased mutation rates are present in mitochondrial DNA (mtDNA). Although mtDNA is maternally inherited and male mtDNA mutation typically does not contribute to genetic variation in offspring, male mtDNA mutations are critical for male reproductive health. In this study, we measured male mtDNA mutation rate using publicly available whole-genome sequences of single sperm of the freshwater microcrustacean Daphnia pulex . Using a stringent mutation detection pipeline, we found that the male mtDNA mutation rate is 3.32 × 10 −6 per site per generation. All the detected mutations are heteroplasmic base substitutions, with 57% of mutations converting G/C to A/T nucleotides. Consistent with the male-biased mutation in the nuclear genome, the male mtDNA mutation rate in D. pulex is approximately 20 times higher than the female rate per generation. We propose that the elevated mutation rate per generation in male mtDNA is consistent with an increased number of cell divisions during male gametogenesis. 
    more » « less
  2. Agashe, Deepa (Ed.)
    Abstract Because errors at the DNA level power pathogen evolution, a systematic understanding of the rate and molecular spectra of mutations could guide the avoidance and treatment of infectious diseases. We thus accumulated tens of thousands of spontaneous mutations in 768 repeatedly bottlenecked lineages of 18 strains from various geographical sites, temporal spread, and genetic backgrounds. Entailing over ∼1.36 million generations, the resultant data yield an average mutation rate of ∼0.0005 per genome per generation, with a significant within-species variation. This is one of the lowest bacterial mutation rates reported, giving direct support for a high genome stability in this pathogen resulting from high DNA-mismatch-repair efficiency and replication-machinery fidelity. Pathogenicity genes do not exhibit an accelerated mutation rate, and thus, elevated mutation rates may not be the major determinant for the diversification of toxin and secretion systems. Intriguingly, a low error rate at the transcript level is not observed, suggesting distinct fidelity of the replication and transcription machinery. This study urges more attention on the most basic evolutionary processes of even the best-known human pathogens and deepens the understanding of their genome evolution. 
    more » « less
  3. Abstract The expression of genomically-encoded information is not error-free. Transcript-error rates are dramatically higher than DNA-level mutation rates, and despite their transient nature, the steady-state load of such errors must impose some burden on cellular performance. However, a broad perspective on the degree to which transcript-error rates are constrained by natural selection and diverge among lineages remains to be developed. Here, we present a genome-wide analysis of transcript-error rates across the Tree of Life using a modified rolling-circle sequencing method, revealing that the range in error rates is remarkably narrow across diverse species. Transcript errors tend to be randomly distributed, with little evidence supporting local control of error rates associated with gene-expression levels. A majority of transcript errors result in missense errors if translated, and as with a fraction of nonsense transcript errors, these are underrepresented relative to random expectations, suggesting the existence of mechanisms for purging some such errors. To quantitatively understand how natural selection and random genetic drift might shape transcript-error rates across species, we present a model based on cell biology and population genetics, incorporating information on cell volume, proteome size, average degree of exposure of individual errors, and effective population size. However, while this model provides a framework for understanding the evolution of this highly conserved trait, as currently structured it explains only 20% of the variation in the data, suggesting a need for further theoretical work in this area. 
    more » « less
  4. Larracuente, Amanda (Ed.)
    Abstract Given the many levels of biological variation in mutation rates observed to date in primates—spanning from species to individuals to genomic regions—future steps in our understanding of mutation rate evolution will not only be aided by a greater breadth of species coverage across the primate clade but also by a greater depth as afforded by an evaluation of multiple trios within individual species. In order to help bridge these gaps, we here present an analysis of a species representing one of the most basal splits on the primate tree (aye-ayes), combining whole-genome sequencing of seven parent–offspring trios from a three-generation pedigree with a novel computational pipeline that takes advantage of recently developed pan-genome graphs, thereby circumventing the application of (highly subjective) quality metrics that has previously been shown to result in notable differences in the detection of de novo mutations and ultimately estimates of mutation rates. This deep sampling has enabled both a detailed picture of parental age effects and sex dependency in mutation rates, which we here compare with previously studied primates, but has also provided unique insights into the nature of genetic variation in one of the most endangered primates on the planet. 
    more » « less
  5. null (Ed.)
    Abstract Male-biased mutation rates occur in a diverse array of organisms. The ratio of male-to-female mutation rate may have major ramifications for evolution across the genome, and for sex-linked genes in particular. In ZW species, the Z chromosome is carried by males two-thirds of the time, leading to the prediction that male-biased mutation rates will have a disproportionate effect on the evolution of Z-linked genes relative to autosomes and the W chromosome. Colubroid snakes (including colubrids, elapids, and viperids) have ZW sex determination, yet male-biased mutation rates have not been well studied in this group. Here we analyze a population genomic dataset from rattlesnakes to quantify genetic variation within and genetic divergence between species. We use a new method for unbiased estimation of population genetic summary statistics to compare variation between the Z chromosome and autosomes and to calculate net nucleotide differentiation between species. We find evidence for a 2.03-fold greater mutation rate in male rattlesnakes relative to females, corresponding to an average μZ/μA ratio of 1.1. Our results from snakes are quantitatively similar to birds, suggesting that male-biased mutation rates may be a common feature across vertebrate lineages with ZW sex determination. 
    more » « less