skip to main content


Title: The Role of Mass and Environment on Satellite Distributions around Milky Way Analogs in the Romulus25 Simulation
Abstract

We study satellite counts and quenched fractions for satellites of Milky Way analogs inRomulus25, a large-volume cosmological hydrodynamic simulation. Depending on the definition of a Milky Way analog, we have between 66 and 97 Milky Way analogs inRomulus25, a 25 Mpc per-side uniform volume simulation. We use these analogs to quantify the effect of environment and host properties on satellite populations. We find that the number of satellites hosted by a Milky Way analog increases predominantly with host stellar mass, while environment, as measured by the distance to a Milky Way–mass or larger halo, may have a notable impact in high isolation. Similarly, we find that the satellite quenched fraction for our analogs also increases with host stellar mass, and potentially in higher-density environments. These results are robust for analogs within 3 Mpc of another Milky Way–mass or larger halo, the environmental parameter space where the bulk of our sample resides. We place these results in the context of observations through comparisons to the Exploration of Local VolumE Satellites and Satellites Around Galactic Analogs surveys. Our results are robust to changes in Milky Way analog selection criteria, including those that mimic observations. Finally, as our samples naturally include Milky Way–Andromeda pairs, we examine quenched fractions in pairs versus isolated systems. We find potential evidence, though not conclusive, that pairs, defined as being within 1 Mpc of another Milky Way–mass or larger halo, may have higher satellite quenched fractions.

 
more » « less
Award ID(s):
1848107
PAR ID:
10468821
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
956
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 96
Size(s):
Article No. 96
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present the star-forming properties of 378 satellite galaxies around 101 Milky Way analogs in the Satellites Around Galactic Analogs (SAGA) Survey, focusing on the environmental processes that suppress or quench star formation. In the SAGA stellar mass range of 106−10M, we present quenched fractions, star-forming rates, gas-phase metallicities, and gas content. The fraction of SAGA satellites that are quenched increases with decreasing stellar mass and shows significant system-to-system scatter. SAGA satellite quenched fractions are highest in the central 100 kpc of their hosts and decline out to the virial radius. Splitting by specific star formation rate (sSFR), the least star-forming satellite quartile follows the radial trend of the quenched population. The median sSFR of star-forming satellites increases with decreasing stellar mass and is roughly constant with projected radius. Star-forming SAGA satellites are consistent with the star formation rate–stellar mass relationship determined in the Local Volume, while the median gas-phase metallicity is higher and median Higas mass is lower at all stellar masses. We investigate the dependence of the satellite quenched fraction on host properties. Quenched fractions are higher in systems with larger host halo mass, but this trend is only seen in the inner 100 kpc; we do not see significant trends with host color or star formation rate. Our results suggest that lower-mass satellites and satellites inside 100 kpc are more efficiently quenched in a Milky Way–like environment, with these processes acting sufficiently slowly to preserve a population of star-forming satellites at all stellar masses and projected radii.

     
    more » « less
  2. Abstract

    Isolated dwarf galaxies usually exhibit robust star formation but satellite dwarf galaxies are often devoid of young stars, even in Milky Way–mass groups. Dwarf galaxies thus offer an important laboratory of the environmental processes that cease star formation. We explore the balance of quiescent and star-forming galaxies (quenched fractions) for a sample of ∼400 satellite galaxies around 30 Local Volume hosts from the Exploration of Local VolumE Satellites (ELVES) Survey. We present quenched fractions as a function of satellite stellar mass, projected radius, and host halo mass, to conclude that overall, the quenched fractions are similar to the Milky Way, dropping below 50% at satelliteM*≈ 108M. We may see hints that quenching is less efficient at larger radii. Through comparison with the semianalytic modeling codeSatGen, we are also able to infer average quenching times as a function of satellite mass in host halo-mass bins. There is a gradual increase in quenching time with satellite stellar mass rather than the abrupt change from rapid to slow quenching that has been inferred for the Milky Way. We also generally infer longer average quenching times than recent hydrodynamical simulations. Our results are consistent with models that suggest a wide range of quenching times are possible via ram pressure stripping, depending on the clumpiness of the circumgalactic medium, the orbits of the satellites, and the degree of earlier preprocessing.

     
    more » « less
  3. Abstract

    Environment plays a critical role in shaping the assembly of low-mass galaxies. Here, we use the UniverseMachine(UM) galaxy–halo connection framework and Data Release 3 of the Satellites Around Galactic Analogs (SAGA) Survey to place dwarf galaxy star formation and quenching into a cosmological context. UM is a data-driven forward model that flexibly parameterizes galaxy star formation rates (SFRs) using only halo mass and assembly history. We add a new quenching model to UM, tailored for galaxies withm≲ 109M, and constrain the model down tom≳ 107Musing new SAGA observations of 101 satellite systems around Milky Way (MW)–mass hosts and a sample of isolated field galaxies in a similar mass range from the Sloan Digital Sky Survey. The new best-fit model, “UM-SAGA,” reproduces the satellite stellar mass functions, average SFRs, and quenched fractions in SAGA satellites while keeping isolated dwarfs mostly star-forming. The enhanced quenching in satellites relative to isolated field galaxies leads the model to maximally rely on halo assembly to explain the observed environmental quenching. Extrapolating the model down tom∼ 106.5Myields a quenched fraction of ≳30% for isolated field galaxies and ≳80% for satellites of MW-mass hosts at this stellar mass. Spectroscopic surveys can soon test this specific prediction to reveal the relative importance of internal feedback, cessation of mass and gas accretion, satellite-specific gas processes, and reionization for the evolution of faint low-mass galaxies.

     
    more » « less
  4. ABSTRACT

    We study the relative fractions of quenched and star-forming satellite galaxies in the Satellites Around Galactic Analogs (SAGA) survey and Exploration of Local VolumE Satellites (ELVES) program, two nearby and complementary samples of Milky Way-like galaxies that take different approaches to identify faint satellite galaxy populations. We cross-check and validate sample cuts and selection criteria, as well as explore the effects of different star-formation definitions when determining the quenched satellite fraction of Milky Way analogues. We find the mean ELVES quenched fraction (〈QF〉), derived using a specific star formation rate (sSFR) threshold, decreases from ∼50 per cent to ∼27 per cent after applying a cut in absolute magnitude to match that of the SAGA survey (〈QF〉SAGA ∼9 per cent). We show these results are consistent for alternative star-formation definitions. Furthermore, these quenched fractions remain virtually unchanged after applying an additional cut in surface brightness. Using a consistently derived sSFR and absolute magnitude limit for both samples, we show that the quenched fraction and the cumulative number of satellites in the ELVES and SAGA samples broadly agree. We briefly explore radial trends in the ELVES and SAGA samples, finding general agreement in the number of star-forming satellites per host as a function of radius. Despite the broad agreement between the ELVES and SAGA samples, some tension remains with these quenched fractions in comparison to the Local Group and simulations of Milky Way analogues.

     
    more » « less
  5. Abstract

    We are entering an era in which we will be able to detect and characterize hundreds of dwarf galaxies within the Local Volume. It is already known that a strong dichotomy exists in the gas content and star formation properties of field dwarf galaxies versus satellite dwarfs of larger galaxies. In this work, we study the more subtle differences that may be detectable in galaxies as a function of distance from a massive galaxy, such as the Milky Way. We compare smoothed particle hydrodynamic simulations of dwarf galaxies formed in a Local Volume-like environment (several megaparsecs away from a massive galaxy) to those formed nearer to Milky Way–mass halos. We find that the impact of environment on dwarf galaxies extends even beyond the immediate region surrounding Milky Way–mass halos. Even before being accreted as satellites, dwarf galaxies near a Milky Way–mass halo tend to have higher stellar masses for their halo mass than more isolated galaxies. Dwarf galaxies in high-density environments also tend to grow faster and form their stars earlier. We show observational predictions that demonstrate how these trends manifest in lower quenching rates, higher Hifractions, and bluer colors for more isolated dwarf galaxies.

     
    more » « less