skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Probing sub-galactic mass structure with the power spectrum of surface-brightness anomalies in high-resolution observations of galaxy-galaxy strong gravitational lenses – I. Power-spectrum measurement and feasibility study
ABSTRACT While the direct detection of the dark-matter particle remains very challenging, the nature of dark matter could be possibly constrained by comparing the observed abundance and properties of small-scale sub-galactic mass structures with predictions from the phenomenological dark-matter models, such as cold, warm, or hot dark matter. Galaxy-galaxy strong gravitational lensing provides a unique opportunity to search for tiny surface-brightness anomalies in the extended lensed images (i.e. Einstein rings or gravitational arcs), induced by possible small-scale mass structures in the foreground lens galaxy. In this paper, the first in a series, we introduce and test a methodology to measure the power spectrum of such surface-brightness anomalies from high-resolution Hubble Space Telescope (HST) imaging. In particular, we focus on the observational aspects of this statistical approach, such as the most suitable observational strategy and sample selection, the choice of modelling techniques, and the noise correction. We test the feasibility of the power-spectrum measurement by applying it to a sample of galaxy-galaxy strong gravitational lens systems from the Sloan Lens ACS Survey, with the most extended, bright, high-signal-to-noise-ratio lensed images, observed in the rest-frame ultraviolet. In the companion paper, we present the methodology to relate the measured power spectrum to the statistical properties of the underlying small-scale mass structures in the lens galaxy and infer the first observational constraints on the sub-galactic matter power spectrum in a massive elliptical (lens) galaxy.  more » « less
Award ID(s):
2205100
PAR ID:
10418066
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
523
Issue:
1
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 1326-1345
Size(s):
p. 1326-1345
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Stringent observational constraints on the subgalactic matter power spectrum would allow one to distinguish between the concordance ΛCDM and the various alternative dark-matter models that predict significantly different properties of mass structure in galactic haloes. Galaxy–galaxy strong gravitational lensing provides a unique opportunity to probe the subgalactic mass structure in lens galaxies beyond the Local Group. Here, we demonstrate the first application of a novel methodology to observationally constrain the subgalactic matter power spectrum in the inner regions of massive elliptical lens galaxies on 1–10 kpc scales from the power spectrum of surface-brightness anomalies in highly magnified galaxy-scale Einstein rings and gravitational arcs. The pilot application of our approach to Hubble Space Telescope (HST/WFC3/F390W) observations of the SLACS lens system SDSS J0252+0039 allows us to place the following observational constraints (at the 99 per cent confidence level) on the dimensionless convergence power spectrum $$\Delta ^{2}_{\delta \kappa }$$ and the standard deviation in the aperture mass σAM: $$\Delta ^{2}_{\delta \kappa }\lt 1$$ (σAM < 0.8 × 108 M⊙) on 0.5-kpc scale, $$\Delta ^{2}_{\delta \kappa }\lt 0.1$$ (σAM < 1 × 108 M⊙) on 1-kpc scale and $$\Delta ^{2}_{\delta \kappa }\lt 0.01$$ (σAM < 3 × 108 M⊙) on 3-kpc scale. These first upper-limit constraints still considerably exceed the estimated effect of CDM subhaloes. However, future analysis of a larger sample of galaxy–galaxy strong lens systems can substantially narrow down these limits and possibly rule out dark-matter models that predict a significantly higher level of density fluctuations on the critical subgalactic scales. 
    more » « less
  2. Abstract In the cold dark matter (CDM) picture of structure formation, galaxy mass distributions are predicted to have a considerable amount of structure on small scales. Strong gravitational lensing has proven to be a useful tool for studying this small-scale structure. Much of the attention has been given to detecting individual dark matter subhaloes through lens modelling, but recent work has suggested that the full population of subhaloes could be probed using a power spectrum analysis. In this paper, we quantify the power spectrum of small-scale structure in simulated galaxies, with the goal of understanding theoretical predictions and setting the stage for using measurements of the power spectrum to test dark matter models. We use a sample of simulated galaxies generated from the galacticus semi-analytic model to determine the power spectrum distribution first in the CDM paradigm and then in a warm dark matter scenario. We find that a measurement of the slope and amplitude of the power spectrum on galaxy strong lensing scales (k ∼ 1 kpc−1) could be used to distinguish between CDM and alternate dark matter models, especially if the most massive subhaloes can be directly detected via gravitational imaging. 
    more » « less
  3. ABSTRACT Using high-resolution cosmological radiation-hydrodynamic (RHD) simulations (thesan-hr), we explore the impact of alternative dark matter (altDM) models on galaxies during the Epoch of Reionization. The simulations adopt the IllustrisTNG galaxy formation model. We focus on altDM models that exhibit small-scale suppression of the matter power spectrum, namely warm dark matter (WDM), fuzzy dark matter (FDM), and interacting dark matter (IDM) with strong dark acoustic oscillations (sDAO). In altDM scenarios, both the halo mass functions and the ultraviolet luminosity functions at z ≳ 6 are suppressed at the low-mass/faint end, leading to delayed global star formation and reionization histories. However, strong non-linear effects enable altDM models to ‘catch up’ with cold dark matter (CDM) in terms of star formation and reionization. The specific star formation rates are enhanced in halos below the half-power mass in altDM models. This enhancement coincides with increased gas abundance, reduced gas depletion times, more compact galaxy sizes, and steeper metallicity gradients at the outskirts of the galaxies. These changes in galaxy properties can help disentangle altDM signatures from a range of astrophysical uncertainties. Meanwhile, it is the first time that altDM models have been studied in RHD simulations of galaxy formation. We uncover significant systematic uncertainties in reionization assumptions on the faint-end luminosity function. This underscores the necessity of accurately modeling the small-scale morphology of reionization in making predictions for the low-mass galaxy population. Upcoming James Webb Space Telescope imaging surveys of deep lensed fields hold potential for uncovering the faint low-mass galaxy population, which could provide constraints on altDM models. 
    more » « less
  4. Abstract If dark matter resides in a hidden sector minimally coupled to the Standard Model, another particle within the hidden sector might dominate the energy density of the early universe temporarily, causing an early matter-dominated era (EMDE). During an EMDE, matter perturbations grow more rapidly than they would in a period of radiation domination, which leads to the formation of microhalos much earlier than they would form in standard cosmological scenarios. These microhalos boost the dark matter annihilation signal, but this boost is highly sensitive to the small-scale cut-off in the matter power spectrum. If the dark matter is sufficiently cold, this cut-off is set by the relativistic pressure of the particle that dominates the hidden sector. We determine the evolution of dark matter density perturbations in this scenario, obtaining the power spectrum at the end of the EMDE. We analyze the suppression of perturbations due to the relativistic pressure of the dominant hidden sector particle and express the cut-off scale and peak scale for which the matter power spectrum is maximized in terms of the properties of this particle. We also supply transfer functions to relate the matter power spectrum with a small-scale cut-off resulting from the pressure of the dominant hidden sector particle to the matter power spectrum that results from a cold hidden sector. These transfer functions facilitate the quick computation of accurate matter power spectra in EMDE scenarios with initially hot hidden sectors and allow us to identify which models significantly enhance the microhalo abundance. 
    more » « less
  5. Abstract The early universe may have contained internally thermalized dark sectors that were decoupled from the Standard Model. In such scenarios, the relic dark thermal bath, composed of the lightest particle in the dark sector, can give rise to an epoch of early matter domination prior to Big Bang Nucleosynthesis, which has a potentially observable impact on the smallest dark matter structures. This lightest dark particle can easily and generically have number-changing self-interactions that give rise to “cannibal” behavior. We consider cosmologies where an initially sub-dominant cannibal species comes to temporarily drive the expansion of the universe, and we provide a simple map between the particle properties of the cannibal species and the key features of the enhanced dark matter perturbation growth in such cosmologies. We further demonstrate that cannibal self-interactions can determine the small-scale cutoff in the matter power spectrum even when the cannibal self-interactions freeze out prior to cannibal domination. 
    more » « less