skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Illumi’s world: A mini-game development with parametric BIM-based simulations
The research investigates the design and development of a serious game to teach green building design and energy literacy in rural middle schools in the United States. The paper presents a pilot study, education mini-game development integrated with parametric BIM and energy simulations. The game scenario was built on the developed science curriculum modules in our funded research, teaching building energy technologies such as daylighting, artificial lighting, window configurations, building materials, solar panels, etc. The mini-game, Illumi’s World, presents a baseline science lab and a media library of typical public schools in the United States. The players have the opportunity to improve energy literacy in several ways: manipulating the building configurations and the energy options, reviewing energy costs and emission level changes, and monitoring the performance from the game dashboards. This paper presents background theory, curriculum design, the mini-game development framework, methods and tools for energy simulation and BIM visualization, and the findings and challenges.  more » « less
Award ID(s):
2201204
PAR ID:
10418094
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
SAGE Publications
Date Published:
Journal Name:
International Journal of Architectural Computing
Volume:
21
Issue:
3
ISSN:
1478-0771
Format(s):
Medium: X Size: p. 462-477
Size(s):
p. 462-477
Sponsoring Org:
National Science Foundation
More Like this
  1. CAADRIA (Ed.)
    Abstract. Green building education prioritizes workforce development to promote high-performing and net zero building adoptions. However, the concept and principles of net zero and building energy have rarely been reflected in the curriculum and instruction of K-12 science education in the United States. This research investigates the design and development of simulation game development paired with a science curriculum to teach green building design and energy principles in rural middle schools. This paper presents our education game development aligned with the newly developed curriculum unit that will be distributed to science classrooms. Green Building Design Studio game was developed from the following research phases: (i) Game scenario design, (ii) Energy simulation module creation, (iii) ML-prediction model development, and (iv) Cost estimation module creation. In ML prediction, the XGBoost algorithm demonstrated reliable performance and accuracy. The game was tested in a 3-day science immersion summer camp with twenty-seven middle school students in Missouri. The research team observed that the game enabled students to iterate de sign changes and promptly see the updated results from the dashboard. This paper describes the game development framework, methods and tools for energy simulation, ML prediction, and game development, as well as the findings and challenges. 
    more » « less
  2. Middle School students in the United States are exposed to an unprecedented number of AI-driven consumer products. This exposure demands that educators help students develop their personal understandings of these technologies to engage with them responsibly. Designing age-appropriate AI curricula for middle school students calls for collaboration and partnership between computer and learning scientists, as well as middle school teachers. Over a 3-year period, we co-designed and successfully implemented an AI education curriculum across 9 geographically and economically diverse schools, offering it to a total of 1551 students. Drawing from our analyses of the curriculum and teacher and student experiences, we propose an effective format for teaching, assessing, and implementing fundamental AI education for middle school settings in the United States. Our research also highlights the value of empowering teachers through co-design; enriching their professional development and improving students’ AI literacy. 
    more » « less
  3. This paper describes a particular teacher professional development model offered in schools on and bordering the Navajo Nation in the southwestern United States. The Diné Institute for Navajo Nation Educators (DINÉ) offers professional development across all content areas and grade levels, but here we focus specifically on our work in science, technology, engineering, and mathematics (STEM) content areas. Our work is situated explicitly within the literatures on Indigenous education, Native Nation Building, and culturally responsive schooling, but we also draw broadly on research in STEM education and teacher professional development. The research question explored in this paper is: To what extent and in what ways do teachers in the DINÉ develop STEM curriculum units that evidence culturally responsive principles and STEM education best practices? We share findings from three cohorts of teachers in the DINÉ’s STEM-focused professional development seminars. Teacher-authored curriculum units developed in the DINÉ were analyzed with two specific protocols: the CRAIS Tool, and the SCOOP notebook. Finally, we look closely at the curriculum units written by a single teacher in the DINÉ across the three years in order to get a clearer understanding of the nuances and richness of the findings and themes reported from the aggregate data. 
    more » « less
  4. Teacher self-efficacy (SE) has been observed to be an 'important construct for Computer Science (CS) teachers' professional development because it can predict both teaching behaviors as well as student outcomes" [1]. The purpose of the present study was to investigate teacher CS SE during a two-year federally funded professional development (PD) and curriculum development project for middle school teachers incorporating game-design and the Unity development platform. The research question investigated is: How does teacher self-efficacy for teaching computer science via game design with the Unity game development platform change during a year-long PD program? Investigations of teacher SE for teaching CS have resulted in some surprising results. For example, it has been reported that - There were no differences in self-efficacy based on teachers' overall level of experience, despite previous findings that teacher self-efficacy is related to amount of experience" and "no differences in self-efficacy related to the teachers' own level of experience with CS" [2], thus further study of CS teacher SE is warranted. Participants in this study were six middle school teachers from four middle schools in the southeastern United States. They participated in a year-long PD program learning the Unity game development platform, elements of game design, and foundations of learner motivation. Guided reflective journaling was used to track the teachers' SE during the first year of the project. Teachers completed journal prompts at four intervals. Prompts consisted of questions like "How do you currently feel about your ability to facilitate student learning with Unity?" and "Are you confident that you can implement the materials the way the project team has planned for them to be implemented?" Prior to beginning the project participants expressed confidence in being able to facilitate student learning after participating in the planned professional development, but there was some uneasiness about learning and using Unity. From a SE perspective their responses make sense, as all of the participants are experienced teachers and should have confidence in their general ability to teach. However, since Unity is a new programming environment for all of the teachers, they did not have the prior experience necessary to have a high degree of confidence that they could successfully use it with their students. 
    more » « less
  5. This poster shares our experience of engaging middle school teachers in a collaborative design of a computer science and digital literacy (CSDL) curriculum through a researcher and practitioner partnership (RPP) among two public universities and three urban school districts in the Northeast USA. The project used the co-design approach to facilitate curriculum development and foster professional learning. In this poster, we introduce the co-design process, the developed curriculum, and teachers' professional learning experiences. Preliminary results indicate that the co-design approach supplemented with one-one-on coaching has not only facilitated the curriculum development but also fostered professional learning and collective capacity building for CS education. 
    more » « less