Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Borowczak, A; Dare, E; Tofel-Grehl, C (Ed.)A teacher’s working context is an important factor in how they make sense of and enact curriculum. Understanding how external factors (e.g. state and/or district policies, school cultural norms) interplay with teachers’ personal resources (e.g. self-understanding, rules of thumb for decision-making) can help identify supports for implementation of increasingly available standard aligned curriculum materials. However, in science education, limited research has explored how curriculum enactments are influenced by this complex interplay. In this qualitative embedded case study, we investigated how four middle school science teachers within the same school district used their internal resources to make sense of external factors when enacting new NGSS-aligned place-based curriculum materials. Data collection occurred over multiple years and included semi-structured individual and focus group interviews, lesson plans, weekly surveys, observations, and memos. Using thematic analysis, we found that a new district-level policy implementing a 6-week science assessment caused differential enactments of the unit, depending on which internal resources teachers drew on to make sense of the curriculum materials. Our findings contribute to further understanding how internal personal resources and external factors support and impede science teachers’ use of curriculum materials in ways that align, or do not align, with recent reform-based learning outlined in the NGSS.more » « lessFree, publicly-accessible full text available May 5, 2026
-
CAADRIA (Ed.)Abstract. Green building education prioritizes workforce development to promote high-performing and net zero building adoptions. However, the concept and principles of net zero and building energy have rarely been reflected in the curriculum and instruction of K-12 science education in the United States. This research investigates the design and development of simulation game development paired with a science curriculum to teach green building design and energy principles in rural middle schools. This paper presents our education game development aligned with the newly developed curriculum unit that will be distributed to science classrooms. Green Building Design Studio game was developed from the following research phases: (i) Game scenario design, (ii) Energy simulation module creation, (iii) ML-prediction model development, and (iv) Cost estimation module creation. In ML prediction, the XGBoost algorithm demonstrated reliable performance and accuracy. The game was tested in a 3-day science immersion summer camp with twenty-seven middle school students in Missouri. The research team observed that the game enabled students to iterate de sign changes and promptly see the updated results from the dashboard. This paper describes the game development framework, methods and tools for energy simulation, ML prediction, and game development, as well as the findings and challenges.more » « lessFree, publicly-accessible full text available March 26, 2026
-
The research investigates the design and development of a serious game to teach green building design and energy literacy in rural middle schools in the United States. The paper presents a pilot study, education mini-game development integrated with parametric BIM and energy simulations. The game scenario was built on the developed science curriculum modules in our funded research, teaching building energy technologies such as daylighting, artificial lighting, window configurations, building materials, solar panels, etc. The mini-game, Illumi’s World, presents a baseline science lab and a media library of typical public schools in the United States. The players have the opportunity to improve energy literacy in several ways: manipulating the building configurations and the energy options, reviewing energy costs and emission level changes, and monitoring the performance from the game dashboards. This paper presents background theory, curriculum design, the mini-game development framework, methods and tools for energy simulation and BIM visualization, and the findings and challenges.more » « less
An official website of the United States government
