skip to main content


This content will become publicly available on June 6, 2024

Title: Climate-smart forestry through innovative wood products and commercial afforestation and reforestation on marginal land
Afforestation and reforestation (AR) on marginal land are nature-based solutions to climate change. There is a gap in understanding the climate mitigation potential of protection and commercial AR with different combinations of forest plantation management and wood utilization pathways. Here, we fill the gap using a dynamic, multiscale life cycle assessment to estimate one-century greenhouse gas (GHG) mitigation delivered by (both traditional and innovative) commercial and protection AR with different planting density and thinning regimes on marginal land in the southeastern United States. We found that innovative commercial AR generally mitigates more GHGs across 100 y (3.73 to 4.15 Giga tonnes of CO 2 equivalent (Gt CO 2 e)) through cross-laminated timber (CLT) and biochar than protection AR (3.35 to 3.69 Gt CO 2 e) and commercial AR with traditional lumber production (3.17 to 3.51 Gt CO 2 e), especially in moderately cooler and dryer regions in this study with higher forest carbon yield, soil clay content, and CLT substitution. In a shorter timeframe (≤50 y), protection AR is likely to deliver higher GHG mitigation. On average, for the same wood product, low-density plantations without thinning and high-density plantations with thinning mitigate more life cycle GHGs and result in higher carbon stock than that of low-density with thinning plantations. Commercial AR increases the carbon stock of standing plantations, wood products, and biochar, but the increases have uneven spatial distributions. Georgia (0.38 Gt C), Alabama (0.28 Gt C), and North Carolina (0.13 Gt C) have the largest carbon stock increases that can be prioritized for innovative commercial AR projects on marginal land.  more » « less
Award ID(s):
2038439
NSF-PAR ID:
10418146
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
120
Issue:
23
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Agricultural soils play a dual role in regulating the Earth's climate by releasing or sequestering carbon dioxide (CO2) in soil organic carbon (SOC) and emitting non‐CO2greenhouse gases (GHGs) such as nitrous oxide (N2O) and methane (CH4). To understand how agricultural soils can play a role in climate solutions requires a comprehensive assessment of net soil GHG balance (i.e., sum of SOC‐sequestered CO2and non‐CO2GHG emissions) and the underlying controls. Herein, we used a model‐data integration approach to understand and quantify how natural and anthropogenic factors have affected the magnitude and spatiotemporal variations of the net soil GHG balance in U.S. croplands during 1960–2018. Specifically, we used the dynamic land ecosystem model for regional simulations and used field observations of SOC sequestration rates and N2O and CH4emissions to calibrate, validate, and corroborate model simulations. Results show that U.S. agricultural soils sequestered Tg CO2‐C year−1in SOC (at a depth of 3.5 m) during 1960–2018 and emitted Tg N2O‐N year−1and Tg CH4‐C year−1, respectively. Based on the GWP100 metric (global warming potential on a 100‐year time horizon), the estimated national net GHG emission rate from agricultural soils was Tg CO2‐eq year−1, with the largest contribution from N2O emissions. The sequestered SOC offset ~28% of the climate‐warming effects resulting from non‐CO2GHG emissions, and this offsetting effect increased over time. Increased nitrogen fertilizer use was the dominant factor contributing to the increase in net GHG emissions during 1960–2018, explaining ~47% of total changes. In contrast, reduced cropland area, the adoption of agricultural conservation practices (e.g., reduced tillage), and rising atmospheric CO2levels attenuated net GHG emissions from U.S. croplands. Improving management practices to mitigate N2O emissions represents the biggest opportunity for achieving net‐zero emissions in U.S. croplands. Our study highlights the importance of concurrently quantifying SOC‐sequestered CO2and non‐CO2GHG emissions for developing effective agricultural climate change mitigation measures.

     
    more » « less
  2. Abstract

    Atmospheric greenhouse gases (GHGs) must be reduced to avoid an unsustainable climate. Because carbon dioxide is removed from the atmosphere and sequestered in forests and wood products, mitigation strategies to sustain and increase forest carbon sequestration are being developed. These strategies require full accounting of forest sector GHG budgets. Here, we describe a rigorous approach using over one million observations from forest inventory data and a regionally calibrated life-cycle assessment for calculating cradle-to-grave forest sector emissions and sequestration. We find that Western US forests are net sinks because there is a positive net balance of forest carbon uptake exceeding losses due to harvesting, wood product use, and combustion by wildfire. However, over 100 years of wood product usage is reducing the potential annual sink by an average of 21%, suggesting forest carbon storage can become more effective in climate mitigation through reduction in harvest, longer rotations, or more efficient wood product usage. Of the ∼10 700 million metric tonnes of carbon dioxide equivalents removed from west coast forests since 1900, 81% of it has been returned to the atmosphere or deposited in landfills. Moreover, state and federal reporting have erroneously excluded some product-related emissions, resulting in 25%–55% underestimation of state total CO2emissions. For states seeking to reach GHG reduction mandates by 2030, it is important that state CO2budgets are effectively determined or claimed reductions will be insufficient to mitigate climate change.

     
    more » « less
  3. null (Ed.)
    The soil carbon (C) stock, comprising soil organic C (SOC) and soil inorganic C (SIC) and being the largest reservoir of the terrestrial biosphere, is a critical part of the global C cycle. Soil has been a source of greenhouse gases (GHGs) since the dawn of settled agriculture about 10 millenia ago. Soils of agricultural ecosystems are depleted of their SOC stocks and the magnitude of depletion is greater in those prone to accelerated erosion by water and wind and other degradation processes. Adoption of judicious land use and science-based management practices can lead to re-carbonization of depleted soils and make them a sink for atmospheric C. Soils in humid climates have potential to increase storage of SOC and those in arid and semiarid climates have potential to store both SOC and SIC. Payments to land managers for sequestration of C in soil, based on credible measurement of changes in soil C stocks at farm or landscape levels, are also important for promoting adoption of recommended land use and management practices. In conjunction with a rapid and aggressive reduction in GHG emissions across all sectors of the economy, sequestration of C in soil (and vegetation) can be an important negative emissions method for limiting global warming to 1.5 or 2°C This article is part of the theme issue ‘The role of soils in delivering Nature's Contributions to People’. 
    more » « less
  4. Abstract

    Biochar is one of the few nature‐based technologies with potential to help achieve net‐zero emissions agriculture. Such an outcome would involve the mitigation of greenhouse gas (GHG) emission from agroecosystems and optimization of soil organic carbon sequestration. Interest in biochar application is heightened by its several co‐benefits. Several reviews summarized past investigations on biochar, but these reviews mostly included laboratory, greenhouse, and mesocosm experiments. A synthesis of field studies is lacking, especially from a climate change mitigation standpoint. Our objectives are to (1) synthesize advances in field‐based studies that have examined the GHG mitigation capacity of soil application of biochar and (2) identify limitations of the technology and research priorities. Field studies, published before 2022, were reviewed. Biochar has variable effects on GHG emissions, ranging from decrease, increase, to no change. Across studies, biochar reduced emissions of nitrous oxide (N2O) by 18% and methane (CH4) by 3% but increased carbon dioxide (CO2) by 1.9%. When biochar was combined with N‐fertilizer, it reduced CO2, CH4, and N2O emissions in 61%, 64%, and 84% of the observations, and biochar plus other amendments reduced emissions in 78%, 92%, and 85% of the observations, respectively. Biochar has shown potential to reduce GHG emissions from soils, but long‐term studies are needed to address discrepancies in emissions and identify best practices (rate, depth, and frequency) of biochar application to agricultural soils.

     
    more » « less
  5. Abstract

    A differentiated urban metabolism methodology is developed to quantify inequality and inform social equity in urban infrastructure strategies aimed at mitigating local in-boundary PM2.5 and co-beneficially reducing transboundary greenhouse gas (GHG) emissions. The method differentiates community-wide local PM2.5 and transboundary GHG emission contributions by households of different income strata, alongside commercial and industrial activities. Applied in three Indian cities (Delhi, Coimbatore, and Rajkot) through development of new data sets, method yields key insights that across all three cities, top-20% highest-income households dominated motorized transportation, electricity, and construction activities, while poorest-20% homes dominated biomass and kerosene use, resulting in the top-20% households contributing more than three times GHGs as the bottom-20% homes. Further, after including commercial and industrial users, top-20% households contributed as much or more in-boundary PM2.5 emissions thanallcommercial ORallindustrial emitters (e.g. Delhi’s top-20% homes contributed 21% of in-boundary PM2.5 similar to industries at 21%. These results enabled co-benefit analysis of various infrastructure transition strategies on the horizon, finding only three could yield both significant GHG and PM2.5 reductions (>2%-each): (a) Modest 10% efficiency improvements among top-20% households, industry and commercial sectors, requiring a focus on wealthiest homes; (b) Phasing out all biomass and kerosene use within cities (impacting poorest); (c) Replacing gas and diesel vehicles with renewable electric vehicles. The differentiated PM2.5 and GHG emissions data-informed social equity in the design of the three co-beneficial infrastructure transitions by: (a)-prioritizing free/subsidized clean cooking fuels to poorest homes; (b)-increasing electricity block rates and behavioral nudging for wealthiest homes; and, (c)-prioritizing electrification of mass transit and promoting electric two-wheelers ahead of providing subsidies for electric cars, where the free-rider phenomenon can occur, which benefits wealthiest homes. The methodology is broadly translatable to cities worldwide, while the policy insights are relevant to rapidly urbanizing Asia and Africa to advance clean, low-carbon urban infrastructure transitions.

     
    more » « less