skip to main content


Search for: All records

Award ID contains: 2038439

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Background

    Woody biomass has been considered as a promising feedstock for biofuel production via thermochemical conversion technologies such as fast pyrolysis. Extensive Life Cycle Assessment studies have been completed to evaluate the carbon intensity of woody biomass-derived biofuels via fast pyrolysis. However, most studies assumed that woody biomass such as forest residues is a carbon–neutral feedstock like annual crops, despite a distinctive timeframe it takes to grow woody biomass. Besides, few studies have investigated the impacts of forest dynamics and the temporal effects of carbon on the overall carbon intensity of woody-derived biofuels. This study addressed such gaps by developing a life-cycle carbon analysis framework integrating dynamic modeling for forest and biorefinery systems with a time-based discounted Global Warming Potential (GWP) method developed in this work. The framework analyzed dynamic carbon and energy flows of a supply chain for biofuel production from pine residues via fast pyrolysis.

    Results

    The mean carbon intensity of biofuel given by Monte Carlo simulation across three pine growth cases ranges from 40.8–41.2 g CO2e MJ−1(static method) to 51.0–65.2 g CO2e MJ−1(using the time-based discounted GWP method) when combusting biochar for energy recovery. If biochar is utilized as soil amendment, the carbon intensity reduces to 19.0–19.7 g CO2e MJ−1(static method) and 29.6–43.4 g CO2e MJ−1in the time-based method. Forest growth and yields (controlled by forest management strategies) show more significant impacts on biofuel carbon intensity when the temporal effect of carbon is taken into consideration. Variation in forest operations and management (e.g., energy consumption of thinning and harvesting), on the other hand, has little impact on the biofuel carbon intensity.

    Conclusions

    The carbon temporal effect, particularly the time lag of carbon sequestration during pine growth, has direct impacts on the carbon intensity of biofuels produced from pine residues from a stand-level pine growth and management point of view. The carbon implications are also significantly impacted by the assumptions of biochar end-of-life cases and forest management strategies.

     
    more » « less
  2. Abstract

    The COVID-19 pandemic has reduced travel but led to an increase in household food and energy consumption. Previous studies have explored the changes in household consumption of food and energy during the pandemic; however, the economy-wide environmental implications of these changes have not been investigated. This study addresses the knowledge gap by estimating the life cycle environmental impacts of U.S. households during the pandemic using a hybrid life cycle assessment. The results revealed that the reduction in travel outweighed the increase in household energy consumption, leading to a nationwide decrease in life cycle greenhouse gas emissions (−255 Mton CO2eq), energy use (−4.46 EJ), smog formation (−9.17 Mton O3eq), minerals and metal use (−16.1 Mton), commercial wastes (−8.31 Mton), and acidification (−226 kton SO2eq). However, U.S. households had more life cycle freshwater withdrawals (+8.6 Gton) and slightly higher eutrophication (+0.2%), ozone depletion (+0.7%), and freshwater ecotoxicity (+2.1%) caused by increased household energy and food consumption. This study also demonstrated the environmental trade-offs between decreased food services and increased food consumption at home, resulting in diverse trends for food-related life cycle environmental impacts.

     
    more » « less
  3. Abstract

    Bioenergy is widely considered a sustainable alternative to fossil fuels. However, large‐scale applications of biomass‐based energy products are limited due to challenges related to feedstock variability, conversion economics, and supply chain reliability. Artificial intelligence (AI), an emerging concept, has been applied to bioenergy systems in recent decades to address those challenges. This paper reviewed 164 articles published between 2005 and 2019 that applied different AI techniques to bioenergy systems. This review focuses on identifying the unique capabilities of various AI techniques in addressing bioenergy‐related research challenges and improving the performance of bioenergy systems. Specifically, we characterized AI studies by their input variables, output variables, AI techniques, dataset size, and performance. We examined AI applications throughout the life cycle of bioenergy systems. We identified four areas in which AI has been mostly applied, including (1) the prediction of biomass properties, (2) the prediction of process performance of biomass conversion, including different conversion pathways and technologies, (3) the prediction of biofuel properties and the performance of bioenergy end‐use systems, and (4) supply chain modeling and optimization. Based on the review, AI is particularly useful in generating data that are hard to be measured directly, improving traditional models of biomass conversion and biofuel end‐uses, and overcoming the challenges of traditional computing techniques for bioenergy supply chain design and optimization. For future research, efforts are needed to develop standardized and practical procedures for selecting AI techniques and determining training data samples, to enhance data collection, documentation, and sharing across bioenergy‐related areas, and to explore the potential of AI in supporting the sustainable development of bioenergy systems from holistic perspectives.

     
    more » « less
  4. Abstract

    This study performs techno‐economic analysis and Monte Carlo simulations (MCS) to explore the effects that variations in biomass feedstock quality have on the economic feasibility of fast pyrolysis biorefineries using decentralized preprocessing sites (i.e., depots that produce pellets). Two biomass resources in the Southeastern United States, that is, pine residues and switchgrass, were examined as feedstocks. A scenario analysis was conducted for an array of different combinations, including different pellet ash control levels, feedstock blending ratios, different biorefinery capacities, and different biorefinery on‐stream capacities, followed by a comparison with the traditional centralized system. MCS results show that, with depot preprocessing, variations in the feedstock moisture and feedstock ash content can be significantly reduced compared with a traditional centralized system. For a biorefinery operating at 100% of its designed capacity, the minimum fuel selling price (MFSP) of the decentralized system is $3.97–$4.39 per gallon gasoline equivalent (GGE) based on the mean value across all scenarios, whereas the mean MFSP for the traditional centralized system was $3.79–$4.12/GGE. To understand the potential benefits of highly flowable pellets in decreasing biorefinery downtime due to feedstock handling and plugging problems, this study also compares the MFSP of the decentralized system at 90% of its designed capacity with a traditional system at 80%. The analysis illustrates that using low ash pellets mixed with switchgrass and pine residues generates a more competitive MFSP. Specifically, for a biorefinery designed for 2,000 oven dry metric ton per day, running a blended pellet made from 75% switchgrass and 25% pine residues with 2% ash level, and operating at 90% of designed capacity could make an MFSP between $4.49 and $4.71/GGE. In contrast, a traditional centralized biorefinery operating at 80% of designed capacity marks an MFSP between $4.72 and $5.28.

     
    more » « less
  5. Various technologies and strategies have been proposed to decarbonize the chemical industry. Assessing the decarbonization, environmental, and economic implications of these technologies and strategies is critical to identifying pathways to a more sustainable industrial future. This study reviews recent advancements and integration of systems analysis models, including process analysis, material flow analysis, life cycle assessment, techno-economic analysis, and machine learning. These models are categorized based on analytical methods and application scales (i.e., micro-, meso-, and macroscale) for promising decarbonization technologies (e.g., carbon capture, storage, and utilization, biomass feedstock, and electrification) and circular economy strategies. Incorporating forward-looking, data-driven approaches into existing models allows for optimizing complex industrial systems and assessing future impacts. Although advances in industrial ecology–, economic-, and planetary boundary–based modeling support a more holistic systems-level assessment, more effects are needed to consider impacts on ecosystems. Effective applications of these advanced, integrated models require cross-disciplinary collaborations across chemical engineering, industrial ecology, and economics.

    Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering , Volume 15 is June 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

     
    more » « less
    Free, publicly-accessible full text available June 7, 2025
  6. Replacing fossil fuels with biofuels offers a promising path to decarbonizing the transportation sector, a major source of greenhouse gas emissions (GHGs). Utilizing waste biomass such as forest residues is particularly appealing, as it avoids land-use change and associated GHG emissions. Current biofuel life cycle assessment (LCA) adopted by regulatory agencies considers forest residues as carbon-neutral feedstock and typically ignores soil organic carbon (SOC) changes from residue removal. Our study quantifies SOC change caused by removing forest residues in the Southern US and found that they can make a substantial contribution to the carbon footprint of biofuel derived from forest residues. Our results emphasize the need to include soil carbon assessment in future LCAs, biofuel policy, and forest management, even when waste biomass is used and no land-use change is involved. 
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  7. Afforestation and reforestation (AR) on marginal land are nature-based solutions to climate change. There is a gap in understanding the climate mitigation potential of protection and commercial AR with different combinations of forest plantation management and wood utilization pathways. Here, we fill the gap using a dynamic, multiscale life cycle assessment to estimate one-century greenhouse gas (GHG) mitigation delivered by (both traditional and innovative) commercial and protection AR with different planting density and thinning regimes on marginal land in the southeastern United States. We found that innovative commercial AR generally mitigates more GHGs across 100 y (3.73 to 4.15 Giga tonnes of CO 2 equivalent (Gt CO 2 e)) through cross-laminated timber (CLT) and biochar than protection AR (3.35 to 3.69 Gt CO 2 e) and commercial AR with traditional lumber production (3.17 to 3.51 Gt CO 2 e), especially in moderately cooler and dryer regions in this study with higher forest carbon yield, soil clay content, and CLT substitution. In a shorter timeframe (≤50 y), protection AR is likely to deliver higher GHG mitigation. On average, for the same wood product, low-density plantations without thinning and high-density plantations with thinning mitigate more life cycle GHGs and result in higher carbon stock than that of low-density with thinning plantations. Commercial AR increases the carbon stock of standing plantations, wood products, and biochar, but the increases have uneven spatial distributions. Georgia (0.38 Gt C), Alabama (0.28 Gt C), and North Carolina (0.13 Gt C) have the largest carbon stock increases that can be prioritized for innovative commercial AR projects on marginal land. 
    more » « less
    Free, publicly-accessible full text available June 6, 2024