skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Salvage decision-making based on carbon following an eastern spruce budworm outbreak
Forest disturbances, such as an eastern spruce budworm ( Choristoneura fumiferana ) outbreak, impact the strength and persistence of forest carbon sinks. Salvage harvests are a typical management response to widespread tree mortality, but the decision to salvage mortality has large implications for the fate of carbon stocks (including forest carbon and harvested wood products) in the near and long terms. In this study, we created decision-support models for salvage harvesting based on carbon after an eastern spruce budworm outbreak. We used lasso regression to determine which stand characteristics (e.g., basal area) are the best predictors of carbon 40 years after an outbreak in both salvage and no salvage scenarios. We modeled carbon at year 40 for different treatment scenarios and discount rates. Treatment scenarios represent residual stand conditions that may be present when an outbreak occurs. Economic discount rates were applied to 40-year carbon values to account for near and long-term carbon storage aspects. We found that the volume and size of eastern spruce budworm host species are significant predictors of salvage preference based on carbon. We found overall that salvaging less volume is recommended to avoid major swings in carbon budgets and that discounting carbon values to apply weight to near or long-term sequestration greatly affects whether salvaging is preferred. Lasso models are constructed for the northeastern US, however, similar concepts may be applied beyond our study area and potentially for other insect outbreaks similar to spruce budworm, such as mountain pine beetle ( Dendroctonus ponderosae ) or hemlock woolly adelgid ( Adelges tsugae ). From a policy standpoint widespread salvaging could create a large carbon emissions deficit with the risk of not being fully replenished within a desired timeframe. Since salvaging is often financially driven, especially for private landowners, carbon market payments or incentives for not salvaging is a consideration for future policy.  more » « less
Award ID(s):
1920908
PAR ID:
10418241
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Forests and Global Change
Volume:
6
ISSN:
2624-893X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Forests are currently a substantial carbon sink globally. Many climate change mitigation strategies leverage forest preservation and expansion, but rely on forests storing carbon for decades to centuries. Yet climate‐driven disturbances pose critical risks to the long‐term stability of forest carbon. We quantify the climate drivers that influence wildfire and climate stress‐driven tree mortality, including a separate insect‐driven tree mortality, for the contiguous United States for current (1984–2018) and project these future disturbance risks over the 21st century. We find that current risks are widespread and projected to increase across different emissions scenarios by a factor of >4 for fire and >1.3 for climate‐stress mortality. These forest disturbance risks highlight pervasive climate‐sensitive disturbance impacts on US forests and raise questions about the risk management approach taken by forest carbon offset policies. Our results provide US‐wide risk maps of key climate‐sensitive disturbances for improving carbon cycle modeling, conservation and climate policy. 
    more » « less
  2. Koch, Frank H. (Ed.)
    Over the past several decades, growth declines and mortality of trembling aspen throughout western Canada and the United States have been linked to drought, often interacting with outbreaks of insects and fungal pathogens, resulting in a “sudden aspen decline” throughout much of aspen’s range. In 2015, we noticed an aggressive fungal canker causing widespread mortality of aspen throughout interior Alaska and initiated a study to quantify potential drivers for the incidence, virulence, and distribution of the disease. Stand-level infection rates among 88 study sites distributed across 6 Alaska ecoregions ranged from <1 to 69%, with the proportion of trees with canker that were dead averaging 70% across all sites. The disease is most prevalent north of the Alaska Range within the Tanana Kuskokwim ecoregion. Modeling canker probability as a function of ecoregion, stand structure, landscape position, and climate revealed that smaller-diameter trees in older stands with greater aspen basal area have the highest canker incidence and mortality, while younger trees in younger stands appear virtually immune to the disease. Sites with higher summer vapor pressure deficits had significantly higher levels of canker infection and mortality. We believe the combined effects of this novel fungal canker pathogen, drought, and the persistent aspen leaf miner outbreak are triggering feedbacks between carbon starvation and hydraulic failure that are ultimately driving widespread mortality. Warmer early-season temperatures and prolonged late summer drought are leading to larger and more severe wildfires throughout interior Alaska that are favoring a shift from black spruce to forests dominated by Alaska paper birch and aspen. Widespread aspen mortality fostered by this rapidly spreading pathogen has significant implications for successional dynamics, ecosystem function, and feedbacks to disturbance regimes, particularly on sites too dry for Alaska paper birch. 
    more » « less
  3. Abstract Climate warming in recent decades has negatively impacted forest health in the western United States. Here, we report on potential early warning signals (EWS) for drought‐related mortality derived from measurements of tree‐ring growth (ring width index; RWI) and carbon isotope discrimination (∆13C), primarily focused on ponderosa pine (Pinus ponderosa). Sampling was conducted in the southern Sierra Nevada Mountains, near the epicenter of drought severity and mortality associated with the 2012–2015 California drought and concurrent outbreak of western pine beetle (Dendroctonus brevicomis). At this site, we found that widespread mortality was presaged by five decades of increasing sensitivity (i.e., increased explained variation) of both tree growth and ∆13C to Palmer Drought Severity Index (PDSI). We hypothesized that increasing sensitivity of tree growth and ∆13C to hydroclimate constitute EWS that indicate an increased likelihood of widespread forest mortality caused by direct and indirect effects of drought. We then tested these EWS in additional ponderosa pine‐dominated forests that experienced varying mortality rates associated with the same California drought event. In general, drier sites showed increasing sensitivity of RWI to PDSI over the last century, as well as higher mortality following the California drought event compared to wetter sites. Two sites displayed evidence that thinning or fire events that reduced stand basal area effectively reversed the trend of increasing hydroclimate sensitivity. These comparisons indicate that reducing competition for soil water and/or decreasing bark beetle host tree density via forest management—particularly in drier regions—may buffer these forests against drought stress and associated mortality risk. EWS such as these could provide land managers more time to mitigate the extent or severity of forest mortality in advance of droughts. Substantial efforts at deploying additional dendrochronological research in concert with remote sensing and forest modeling will aid in forecasting of forest responses to continued climate warming. 
    more » « less
  4. Research Highlights: Interior Alaska boreal forest is still largely intact and forest harvest management, if applied appropriately across the forest landscape, can potentially mitigate the effects of climate warming, such as increasing wildfire and decreasing mature tree growth. Background and Objectives: This study examines historical relationships between forest growth and harvest in central boreal Alaska over the last 40 years in order to contribute to the development of sustainable forest harvesting practices. Materials and Methods: We compiled data from forest inventory and forest harvest and reforestation databases and analyzed harvesting intensity relative to growth. Results: Forest harvest management has relied heavily on natural regeneration due to a small profit margin. We found that volume harvested in the last 40 years was lower than volume growth; however, harvest activity was concentrated on the small road-accessible area and in the mature white spruce type. As a result, harvest activities need to be distributed geographically and by species in a way that prevents reduction of forest productivity or loss of ecosystem services. An expansion of the road network, or a shift in harvesting and utilization from white spruce to broadleaf would allow a significant increase in sustainable wood yield. Conclusions: There are two potential areas that could provide increased harvest, which contain a large amount of white spruce, birch, and aspen. Under rapid climate change, sustainable forest harvest management must consider the effects of fires, such as needs of salvage logging and a potential reduction of harvestable timber volumes due to damages. Forest harvest management could emulate natural fire disturbance and help reduce fuel amounts to prevent intensive and large-scale fires in the future in areas where fires are most aggressively suppressed. 
    more » « less
  5. Abstract Forest fire frequency, extent, and severity have rapidly increased in recent decades across the western United States (US) due to climate change and suppression‐oriented wildfire management. Fuels reduction treatments are an increasingly popular management tool, as evidenced by California's plan to treat 1 million acres annually by 2050. However, the aggregate efficacy of fuels treatments in dry forests at regional and multi‐decadal scales is unknown. We develop a novel fuels treatment module within a coupled dynamic vegetation and fire model to study the effects of dead biomass removal from forests in the Sierra Nevada region of California. We ask how annual treatment extent, stand‐level treatment intensiveness, and spatial treatment placement alter fire severity and live carbon loss. We find that a ∼30% reduction in stand‐replacing fire was achieved under our baseline treatment scenario of 1,000 km2 year−1after a 100‐year treatment period. Prioritizing the most fuel‐heavy stands based on precise fuel distributions yielded cumulative reductions in pyrogenic stand‐replacement of up to 50%. Both removing constraints on treatment location due to remoteness, topography, and management jurisdiction and prioritizing the most fuel‐heavy stands yielded the highest stand‐replacement rate reduction of ∼90%. Even treatments that succeeded in lowering aggregate fire severity often took multiple decades to yield measurable effects, and avoided live carbon loss remained negligible across scenarios. Our results suggest that strategically placed fuels treatments are a promising tool for controlling forest fire severity at regional, multi‐decadal scales, but may be less effective for mitigating live carbon losses. 
    more » « less