skip to main content

Search for: All records

Award ID contains: 1920908

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 6, 2023
  2. The winter-spring shoulder season, or vernal window, is a key period for ecosystem carbon, water, and energy cycling. Sometimes referred to as mud season, in temperate forests, this transitional season opens with the melting of snowpack in seasonally snow-covered forests and closes when the canopy fills out. Sunlight pours onto the forest floor, soils thaw and warm, and there is an uptick in soil respiration. Scientists hypothesize that this window of ecological opportunity will lengthen in the future; these changes could have implications across all levels of the ecosystem, including the availability of food and water in human systems. Yet,more »there remains a dearth of observations that track both winter and spring indicators at the same location. Here, we present an inquiry-based, low-cost approach for elementary to high school classrooms to track environmental changes in the winter-spring shoulder season. Engagement in hypothesis generation and the use of claim, evidence, and reasoning practices are coupled with field measurement protocols, which provides teachers and students an authentic research experience that allows for a place-based understanding of local ecosystems and their connection to climate change.« less
    Free, publicly-accessible full text available April 1, 2023
  3. Free, publicly-accessible full text available April 1, 2023
  4. Free, publicly-accessible full text available January 29, 2023
  5. Free, publicly-accessible full text available January 24, 2023
  6. Free, publicly-accessible full text available January 1, 2023
  7. https://arxiv.org/abs/2006.12463
    Free, publicly-accessible full text available December 17, 2022
  8. Abstract Tree size-density dynamics can inform key trends in forest productivity along with opportunities to increase ecosystem resiliency. Here, we employ a novel approach to estimate the relative density (RD, range 0–1) of any given forest based on its current size-density relationship compared to a hypothetical maximum using the coterminous US national forest inventory between 1999 and 2020. The analysis suggests a static forest land area in the US with less tree abundance but greatly increased timber volume and tree biomass. Coupled with these resource trends, an increase in RD was identified with 90% of US forest land now reachingmore »a biologically-relevant threshold of canopy closure and/or self-thinning induced mortality (RD > 0.3), particularly in areas prone to future drought conditions (e.g., West Coast). Notably, the area of high RD stands (RD > 0.6) has quintupled over the past 20 years while the least stocked stands (RD < 0.3) have decreased 3%. The evidence from the coterminous US forest RD distribution suggest opportunities to increase live tree stocking in understocked stands, while using density management to address tree mortality and resilience to disturbances in increasingly dense forests.« less
    Free, publicly-accessible full text available December 1, 2022
  9. Free, publicly-accessible full text available September 1, 2022
  10. Free, publicly-accessible full text available August 1, 2022