skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Decadal Variability of Winter Warm Arctic‐Cold Eurasia Dipole Patterns Modulated by Pacific Decadal Oscillation and Atlantic Multidecadal Oscillation
Award ID(s):
2015780 1743738
PAR ID:
10418253
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Earth's Future
Volume:
10
Issue:
1
ISSN:
2328-4277
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We investigate coupled climate model initialized predictions of the Pacific Decadal Oscillation (PDO) prediction skill in the Community Earth System Model (CESM) Seasonal to Multi Year Large Ensemble (SMYLE). The PDO is predictable up to a year in advance in SMYLE; however, the predictability depends on verification month, with skill degrading most rapidly in boreal spring for all initializations. To examine the role of teleconnections from El Niño–Southern Oscillation (ENSO) in the prediction skill of the PDO, we use a multi‐linear regression model. The linear model shows that initial value persistence explains most of the PDO prediction skill in SMYLE. In addition, the PDO prediction skill's seasonal dependence is fully reproduced only when ENSO is included as a predictor. These results suggest that ENSO has a strong influence on the seasonality of PDO predictions. 
    more » « less
  2. Abstract Predicting Pacific Decadal Oscillation (PDO) transitions and understanding the associated mechanisms has proven a critical but challenging task in climate science. As a form of decadal variability, the PDO is associated with both large‐scale climate shifts and regional climate predictability. We show that artificial neural networks (ANNs) predict PDO persistence and transitions with lead times of 12 months onward. Using layer‐wise relevance propagation to investigate the ANN predictions, we demonstrate that the ANNs utilize oceanic patterns that have been previously linked to predictable PDO behavior. For PDO transitions, ANNs recognize a build‐up of ocean heat content in the off‐equatorial western Pacific 12–27 months before a transition occurs. The results support the continued use of ANNs in climate studies where explainability tools can assist in mechanistic understanding of the climate system. 
    more » « less