skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 28, 2026

Title: Seasonality of Pacific Decadal Oscillation Prediction Skill
Abstract We investigate coupled climate model initialized predictions of the Pacific Decadal Oscillation (PDO) prediction skill in the Community Earth System Model (CESM) Seasonal to Multi Year Large Ensemble (SMYLE). The PDO is predictable up to a year in advance in SMYLE; however, the predictability depends on verification month, with skill degrading most rapidly in boreal spring for all initializations. To examine the role of teleconnections from El Niño–Southern Oscillation (ENSO) in the prediction skill of the PDO, we use a multi‐linear regression model. The linear model shows that initial value persistence explains most of the PDO prediction skill in SMYLE. In addition, the PDO prediction skill's seasonal dependence is fully reproduced only when ENSO is included as a predictor. These results suggest that ENSO has a strong influence on the seasonality of PDO predictions.  more » « less
Award ID(s):
2311162 2022740
PAR ID:
10626794
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
American Geophysical Union
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
52
Issue:
14
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The El Niño‐Southern Oscillation (ENSO) phenomenon—the dominant source of climate variability on seasonal to multi‐year timescales—is predictable a few seasons in advance. Forecast skill at longer multi‐year timescales has been found in a few models and forecast systems, but the robustness of this predictability across models has not been firmly established owing to the cost of running dynamical model predictions at longer lead times. In this study, we use a massive collection of multi‐model hindcasts performed using model analogs to show that multi‐year ENSO predictability is robust across models and arises predominantly due to skillful prediction of multi‐year La Nina events following strong El Niño events. 
    more » « less
  2. Abstract. The potential for multiyear prediction of impactful Earthsystem change remains relatively underexplored compared to shorter(subseasonal to seasonal) and longer (decadal) timescales. In this study, weintroduce a new initialized prediction system using the Community EarthSystem Model version 2 (CESM2) that is specifically designed to probepotential and actual prediction skill at lead times ranging from 1 month outto 2 years. The Seasonal-to-Multiyear Large Ensemble (SMYLE) consists of acollection of 2-year-long hindcast simulations, with four initializations peryear from 1970 to 2019 and an ensemble size of 20. A full suite of output isavailable for exploring near-term predictability of all Earth systemcomponents represented in CESM2. We show that SMYLE skill for ElNiño–Southern Oscillation is competitive with other prominent seasonalprediction systems, with correlations exceeding 0.5 beyond a lead time of 12months. A broad overview of prediction skill reveals varying degrees ofpotential for useful multiyear predictions of seasonal anomalies in theatmosphere, ocean, land, and sea ice. The SMYLE dataset, experimentaldesign, model, initial conditions, and associated analysis tools are allpublicly available, providing a foundation for research on multiyearprediction of environmental change by the wider community. 
    more » « less
  3. Abstract Observations show that the teleconnection between the El Niño‐Southern Oscillation (ENSO) and the Asian summer monsoon (ASM) is non‐stationary. However, the underlying mechanisms are poorly understood due to inadequate availability of reliable, long‐term observations. This study uses two state‐of‐the‐art data assimilation‐based reconstructions of last millennium climate to examine changes in the ENSO–ASM teleconnection; we investigate how modes of (multi‐)decadal climate variability (namely, the Pacific Decadal Oscillation, PDO, and the Atlantic Multidecadal Oscillation, AMO) modulate the ENSO–ASM relationship. Our analyses reveal that the PDO exerts a more pronounced impact on ASM variability than the AMO. By comparing different linear regression models, we find that including the PDO in addition to ENSO cycles can improve prediction of the ASM, especially for the Indian summer monsoon. In particular, dry (wet) anomalies caused by El Niño (La Niña) over India become enhanced during the positive (negative) PDO phases due to a compounding effect. However, composite differences in the ENSO–ASM relationship between positive and negative phases of the PDO and AMO are not statistically significant. A significant influence of the PDO/AMO on the ENSO–ASM relationship occurred only over a limited period within the last millennium. By leveraging the long‐term paleoclimate reconstructions, we document and interrogate the non‐stationary nature of the PDO and AMO in modulating the ENSO–ASM relationship. 
    more » « less
  4. An analysis of crop yields for the state of Missouri was completed to determine if an interannual or multidecadal variability existed as a result of the El Niño Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO). Corn and soybean yields were recorded in kilograms per hectare for each of the six climate regions of Missouri. An analysis using the Mokhov “method of cycles” demonstrated interannual, interdecadal, and multidecadal variations in crop yields. Cross-spectral analysis was used to determine which region was most impacted by ENSO and PDO influenced seasonal (April–September) temperature and precipitation. Interannual (multidecadal) variations found in the spectral analysis represent a relationship to ENSO (PDO) phase, while interdecadal variations represent a possible interaction between ENSO and PDO. Average crop yields were then calculated for each combination of ENSO and PDO phase, displaying a pronounced increase in corn and soybean yields when ENSO is warm and PDO is positive. Climate regions 1, 2, 4, and 6 displayed significant differences (p value of 0.10 or less) in yields between El Niño and La Niña years, representing 55–70 % of Missouri soybean and corn productivity, respectively. Final results give the opportunity to produce seasonal predictions of corn and soybean yields, specific to each climate region in Missouri, based on the combination of ENSO and PDO phases. 
    more » « less
  5. Abstract Anthropogenic carbon emissions and associated climate change are driving rapid warming, acidification, and deoxygenation in the ocean, which increasingly stress marine ecosystems. On top of long‐term trends, short term variability of marine stressors can have major implications for marine ecosystems and their management. As such, there is a growing need for predictions of marine ecosystem stressors on monthly, seasonal, and multi‐month timescales. Previous studies have demonstrated the ability to make reliable predictions of the surface ocean physical and biogeochemical state months to years in advance, but few studies have investigated forecast skill of multiple stressors simultaneously or assessed the forecast skill below the surface. Here, we use the Community Earth System Model (CESM) Seasonal to Multiyear Large Ensemble (SMYLE) along with novel observation‐based biogeochemical and physical products to quantify the predictive skill of dissolved inorganic carbon (DIC), dissolved oxygen, and temperature in the surface and subsurface ocean. CESM SMYLE demonstrates high physical and biogeochemical predictive skill multiple months in advance in key oceanic regions and frequently outperforms persistence forecasts. We find up to 10 months of skillful forecasts, with particularly high skill in the Northeast Pacific (Gulf of Alaska and California Current Large Marine Ecosystems) for temperature, surface DIC, and subsurface oxygen. Our findings suggest that dynamical marine ecosystem prediction could support actionable advice for decision making. 
    more » « less