Abstract Invasive forest pests can affect the composition and physical structure of forest canopies that may facilitate invasion by non‐native plants. However, it remains unclear whether this process is generalizable across invasive plant species at broad spatial scales, and how other landscape characteristics may simultaneously facilitate non‐native plant invasion. Here, we assembled a dataset of over 3000 repeatedly measured forest plots and quantified the impact of emerald ash borer (EAB,Agrilus planipennis) residence time, land cover, and forest structure on the accumulation and coverage of invasive plants. We show plots in counties with longer EAB residences tended to accumulate more invasive plants than plots with shorter EAB residences. On average, nearly half of the plots with ash (Fraxinusspp.) in counties with EAB accumulated an additional 0.48 invasive plant species over the 5‐ to 6‐year resample interval compared to plots with ash in counties without EAB at the time of sampling. Increases in invasive species coverage were also evident in counties with EAB—although residence time did not have a strong effect, while forest gap fraction and vertical complexity were each negatively associated with increased coverage. This work has implications for understanding how invasive forest pests can facilitate the spread of non‐native plants.
more »
« less
Changing litter composition following the dual invasion of Amur honeysuckle and the emerald ash borer alters fungal driven decomposition in Midwestern forests
Midwestern forests are currently impacted by two prominent invaders, the emerald ash borer (EAB; Agrilus planipennis) and Amur honeysuckle (AHS; Lonicera maackii). The loss of ash (Fraxinus spp.) trees due to EAB invasion can further facilitate AHS invasion, driving changes in the composition of forest leaf litter to reflect a greater portion of labile, more easily decomposed litter. To evaluate the extent to which these changes alter ecosystem function, we conducted litter bag and culture-based decomposition experiments using leaf litter from sugar maple (Acer saccharum), oak (Quercus spp.), black ash (Fraxinus nigra), green ash (Fraxinus pennsylvanica), spicebush (Lindera benzoin) and AHS. To further understand the mechanism driving differences in decay rates, we inoculated six species of decomposing fungi separately onto both single species and multispecies (half AHS and half native species) leaf litter and measured decomposition rate, fungal growth and enzymatic activity in laboratory-based cultures. AHS leaf litter decomposed faster, had increased fungal growth, and had higher activity for carbon degrading enzymes compared to native species leaf litter. Furthermore, multispecies mixtures followed the same patterns as AHS, suggesting that the addition of AHS to leaf litter to native litter will accelerate ecosystem functions related to carbon breakdown. Consequently, forests that experience the invasion of AHS and EAB induced loss of ash are likely to have faster rates of decomposition, potentially resulting in an influx of available nutrients.
more »
« less
- Award ID(s):
- 2227331
- PAR ID:
- 10418327
- Date Published:
- Journal Name:
- Biological Invasions
- ISSN:
- 1387-3547
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT Plants have coevolved with herbivorous insects for millions of years, resulting in variation in resistance both within and between species. Using a manipulative experiment combined with untargeted metabolomics, microbiome sequencing and transcriptomics approaches, we investigated the roles of plant metabolites and the microbiome in defence mechanisms in native resistant Manchurian ash (Fraxinus mandshurica) trees and non‐native susceptible velvet ash (Fraxinus velutina) trees against the highly invasive emerald ash borer (EAB,Agrilus planipennis). Comparative transcriptomics and metabolomics analyses show that the phenylpropanoid pathway, which is enriched in differentially expressed genes and differentially abundant metabolites, may serve as a potential regulator of resistance. Additionally, the microbiome is distinctly shifted in two ash species. Indicator taxa analysis reveals that the distinct genera are dominant in the galleries of two ash species, for example,Pseudomonasin velvet, andHafnia‐Obesumbacteriumin Manchurian. The strong correlation between indicator taxa and metabolites suggests that the chemical compounds might impact the microbial community in phloem directly or indirectly, or vice versa. This study significantly enhances our understanding of the variation in resistance between ash species and its contribution to the invasion success of EAB, providing valuable insights for the development of pest management strategies.more » « less
-
Abstract Ectomycorrhizal (ECM) fungi have long been thought to reduce litter decomposition in nitrogen (N)‐limited ecosystems by outcompeting saprotrophs for litter N (a phenomenon known as the ‘Gadgil effect’). However, recent research has called the generality of this effect into question, by demonstrating that ECM fungi can increase or decrease organic matter decomposition in different forests. The ecological factors driving such variation in the size and direction of ECM fungal effects on decomposition remain unclear.Here, we tested the hypothesis that ECM fungi would suppress decomposition of N‐poor, recalcitrant litter more in forests with lower N‐availability by exacerbating saprotrophic N limitation. We conducted an in situ ECM fungal and root reduction experiment (via soil trenching) in nine pine forests across three US states, which varied in soil and litter N content, climate and pine host (Pinus muricatain California,P. elliottiiin Florida and P.resinosain Minnesota). In each site, we decomposed needle litter from (1) a pine species native to that site and (2) a common litter,P. strobus, for 1 year.Contrary to our expectations, ECM fungi either stimulated (California) or had no effect on (Florida and Minnesota) pine needle decomposition. Across sites, ECM fungal stimulation of decomposition did increase with total soil N content, but was unrelated to inorganic N availability. Furthermore, despite previous work suggesting that competition for N structures ECM fungal–saprotroph interactions, trenching effects on decomposition did not differ between pine litter types, despite large differences in initial litter C:N ratios, recalcitrance and net litter N immobilization.Synthesis. Taken together, our results add to a growing body of evidence that the ‘Gadgil effect’ is not universal, even in the N‐poor litter of temperate pine forests where it was first described and is often invoked. Furthermore, the inconsistency of relationships between trenching effects with different metrics of decomposer N supply and demand calls into question the central role of N in structuring fungal interguild interactions.more » « less
-
In northern hardwood forests, litter decomposition might be affected by nutrient availability, species composition, stand age, or access by decomposers. We investigated these factors at the Bartlett Experimental Forest in New Hampshire. Leaf litter of early and late successional species was collected from four stands that had full factorial nitrogen and phosphorus additions to the soil and were deployed in bags of two mesh sizes (63 µm and 2 mm) in two young and two mature stands. Litter bags were collected three times over the next 2 years, and mass loss was described as an exponential function of time represented by a thermal sum. Litter from young stands had higher initial N and P concentrations and decomposed more quickly than litter from mature stands (p = 0.005), regardless of where it was deployed. Litter decomposed more quickly in fine mesh bags that excluded mesofauna (p < 0.001), which might be explained by the greater rigidity of the large mesh material making poor contact with the soil. Neither nutrient addition (p = 0.94 for N, p = 0.26 for P) nor the age of the stand in which bags were deployed (p = 0.36) had a detectable effect on rates of litter decomposition.more » « less
-
The emerald ash borer (EAB), Agrilus planipennis, is a destructive invasive insect of North American ash (Fraxinus). While microorganisms associated with the beetle may contribute to tree decline and death, the microbial community succession during an EAB attack is unknown. We repeatedly sampled the bottom two meters of green ash (Fraxinus pennsylvanica) and black ash (Fraxinus nigra) in seven stands across an infestation gradient over four years. Amplicon libraries were sequenced from control phloem tissue of trees showing no symptoms of infestation, uninfested phloem of trees with EAB, infested phloem (galleries), frass, and larvae to determine if there are shifts in the fungal and bacterial communities as trees succumb to EAB attack. We found that the control phloem communities significantly differed from the beetle-infested phloem in both tree species. Furthermore, as EAB progressed in its attack from the top limbs to the tree’s base, the microbial communities in uninfested phloem outside the galleries shifted away from communities in phloem of control trees. In infested phloem, more than 80% of the detected taxa were absent from control trees (i.e., most taxa were non-latent). However, the relative abundance of latent taxa in infested phloem was higher than the relative abundance of the non-latent taxa, especially for potential canker-causing fungi, which increased 21-fold and 32-fold in black ash and green ash trees, respectively. These findings provide valuable insight into how a woodboring beetle shapes the microbial environment within trees over time, influencing the overall microbial diversity, such as canker-causing and wood decay taxa.more » « less
An official website of the United States government

