Activation of voltage-gated calcium channels at presynaptic terminals leads to local increases in calcium and the fusion of synaptic vesicles containing neurotransmitter. Presynaptic output is a function of the density of calcium channels, the dynamic properties of the channel, the distance to docked vesicles, and the release probability at the docking site. We demonstrate that at Caenorhabditis elegans neuromuscular junctions two different classes of voltage-gated calcium channels, CaV2 and CaV1, mediate the release of distinct pools of synaptic vesicles. CaV2 channels are concentrated in densely packed clusters ~250 nm in diameter with the active zone proteins Neurexin, α-Liprin, SYDE, ELKS/CAST, RIM-BP, α-Catulin, and MAGI1. CaV2 channels are colocalized with the priming protein UNC-13L and mediate the fusion of vesicles docked within 33 nm of the dense projection. CaV2 activity is amplified by ryanodine receptor release of calcium from internal stores, triggering fusion up to 165 nm from the dense projection. By contrast, CaV1 channels are dispersed in the synaptic varicosity, and are colocalized with UNC-13S. CaV1 and ryanodine receptors are separated by just 40 nm, and vesicle fusion mediated by CaV1 is completely dependent on the ryanodine receptor. Distinct synaptic vesicle pools, released by different calcium channels, could be used to tune the speed, voltage-dependence, and quantal content of neurotransmitter release.
more »
« less
The Role of Membrane Affinity and Binding Modes in Alpha-Synuclein Regulation of Vesicle Release and Trafficking
Alpha-synuclein is a presynaptic protein linked to Parkinson’s disease with a poorly characterized physiological role in regulating the synaptic vesicle cycle. Using RBL-2H3 cells as a model system, we earlier reported that wild-type alpha-synuclein can act as both an inhibitor and a potentiator of stimulated exocytosis in a concentration-dependent manner. The inhibitory function is constitutive and depends on membrane binding by the helix-2 region of the lipid-binding domain, while potentiation becomes apparent only at high concentrations. Using structural and functional characterization of conformationally selective mutants via a combination of spectroscopic and cellular assays, we show here that binding affinity for isolated vesicles similar in size to synaptic vesicles is a primary determinant of alpha-synuclein-mediated potentiation of vesicle release. Inhibition of release is sensitive to changes in the region linking the helix-1 and helix-2 regions of the N-terminal lipid-binding domain and may require some degree of coupling between these regions. Potentiation of release likely occurs as a result of alpha-synuclein interactions with undocked vesicles isolated away from the active zone in internal pools. Consistent with this, we observe that alpha-synuclein can disperse vesicles from in vitro clusters organized by condensates of the presynaptic protein synapsin-1.
more »
« less
- Award ID(s):
- 1950525
- PAR ID:
- 10418335
- Date Published:
- Journal Name:
- Biomolecules
- Volume:
- 12
- Issue:
- 12
- ISSN:
- 2218-273X
- Page Range / eLocation ID:
- 1816
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Long-term potentiation (LTP) is a cellular mechanism of learning and memory that results in a sustained increase in the probability of vesicular release of neurotransmitter. However, previous work in hippocampal area CA1 of the adult rat revealed that the total number of vesicles per synapse decreases following LTP, seemingly inconsistent with the elevated release probability. Here, electron-microscopic tomography (EMT) was used to assess whether changes in vesicle density or structure of vesicle tethering filaments at the active zone might explain the enhanced release probability following LTP. The spatial relationship of vesicles to the active zone varies with functional status. Tightly docked vesicles contact the presynaptic membrane, have partially formed SNARE complexes, and are primed for release of neurotransmitter upon the next action potential. Loosely docked vesicles are located within 8 nm of the presynaptic membrane where SNARE complexes begin to form. Nondocked vesicles comprise recycling and reserve pools. Vesicles are tethered to the active zone via filaments composed of molecules engaged in docking and release processes. The density of tightly docked vesicles was increased 2 h following LTP compared to control stimulation, whereas the densities of loosely docked or nondocked vesicles congregating within 45 nm above the active zones were unchanged. The tethering filaments on all vesicles were shorter and their attachment sites shifted closer to the active zone. These findings suggest that tethering filaments stabilize more vesicles in the primed state. Such changes would facilitate the long-lasting increase in release probability following LTP.more » « less
-
A considerable amount of energy is expended following presynaptic activity to regenerate electrical polarization and maintain efficient release and recycling of neurotransmitter. Mitochondria are the major suppliers of neuronal energy, generating ATP via oxidative phosphorylation. However, the specific utilization of energy from cytosolic glycolysis rather than mitochondrial respiration at the presynaptic terminal during synaptic activity remains unclear and controversial. We use a synapse specialized for high-frequency transmission in mice, the calyx of Held, to test the sources of energy used to maintain energy during short activity bursts (<1 s) and sustained neurotransmission (30–150 s). We dissect the role of presynaptic glycolysis versus mitochondrial respiration by acutely and selectively blocking these ATP-generating pathways in a synaptic preparation where mitochondria and synaptic vesicles are prolific, under near-physiological conditions. Surprisingly, if either glycolysis or mitochondrial ATP production is intact, transmission during repetitive short bursts of activity is not affected. In slices from young animals before the onset of hearing, where the synapse is not yet fully specialized, both glycolytic and mitochondrial ATP production are required to support sustained, high-frequency neurotransmission. In mature synapses, sustained transmission relies exclusively on mitochondrial ATP production supported by bath lactate, but not glycolysis. At both ages, we observe that action potential propagation begins to fail before defects in synaptic vesicle recycling. Our data describe a specific metabolic profile to support high-frequency information transmission at the mature calyx of Held, shifting during postnatal synaptic maturation from glycolysis to rely on monocarboxylates as a fuel source. NEW & NOTEWORTHY We dissect the role of presynaptic glycolysis versus mitochondrial respiration in supporting high-frequency neurotransmission, by acutely blocking these ATP-generating pathways at a synapse tuned for high-frequency transmission. We find that massive energy expenditure is required to generate failure when only one pathway is inhibited. Action potential propagation is lost before impaired synaptic vesicle recycling. Synaptic transmission is exclusively dependent on oxidative phosphorylation in mature synapses, indicating presynaptic glycolysis may be dispensable for ATP maintenance.more » « less
-
null (Ed.)Analysis of the presynaptic action potential’s (AP syn ) role in synaptic facilitation in hippocampal pyramidal neurons has been difficult due to size limitations of axons. We overcame these size barriers by combining high-resolution optical recordings of membrane potential, exocytosis, and Ca 2+ in cultured hippocampal neurons. These recordings revealed a critical and selective role for K v 1 channel inactivation in synaptic facilitation of excitatory hippocampal neurons. Presynaptic K v 1 channel inactivation was mediated by the K v β1 subunit and had a surprisingly rapid onset that was readily apparent even in brief physiological stimulation paradigms including paired-pulse stimulation. Genetic depletion of K v β1 blocked all broadening of the AP syn during high-frequency stimulation and eliminated synaptic facilitation without altering the initial probability of vesicle release. Thus, using all quantitative optical measurements of presynaptic physiology, we reveal a critical role for presynaptic K v channels in synaptic facilitation at presynaptic terminals of the hippocampus upstream of the exocytic machinery.more » « less
-
Abstract Chromatin remodeling proteins of the chromodomain DNA-binding protein family, CHD7 and CHD8, mediate early neurodevelopmental events including neural migration and differentiation. As such, mutations in either protein can lead to neurodevelopmental disorders. How chromatin remodeling proteins influence the activity of mature synapses, however, is relatively unexplored. A critical feature of mature neurons is well-regulated endocytosis, which is vital for synaptic function to recycle membrane and synaptic proteins enabling the continued release of synaptic vesicles. Here we show that Kismet, theDrosophilahomolog of CHD7 and CHD8, regulates endocytosis. Kismet positively influenced transcript levels and bound todap160andendophilin Btranscription start sites and promoters in whole nervous systems and influenced the synaptic localization of Dynamin/Shibire. In addition,kismetmutants exhibit reduced VGLUT, a synaptic vesicle marker, at stimulated but not resting synapses and reduced levels of synaptic Rab11. Endocytosis is restored atkismetmutant synapses by pharmacologically inhibiting the function of histone deacetyltransferases (HDACs). These data suggest that HDAC activity may oppose Kismet to promote synaptic vesicle endocytosis. A deeper understanding of how CHD proteins regulate the function of mature neurons will help better understand neurodevelopmental disorders.more » « less