skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: WIP: Evaluating the Impact on a User’s Motivation To Improve Their Sketching Ability Due to the Gamification of a User Interface
Sketching skills are developed over time through practice, requiring students to stay motivated to continue improving. Gamification has been shown to be helpful in keeping users motivated, so this work seeks to investigate the impact of gamification on the user’s motivation to practice sketching skills in the intelligent tutoring system, SketchTivity. Specifically, this work will evaluate the impact of gamified elements including achievement banners, star ratings, and performance statistics to give users feedback about their level of success after a sketching lesson. This concept will be explored through within subjects focus group testing where participants will interact with each version of the interface, describe their experiences in a think-aloud fashion, and discuss their preferences in a post-interview. The motivational impact of the gamified elements will be synthesized through thematic analysis of the think-aloud comments and interview data as well as statistical analysis of performance differences in terms of SketchTivity’s sketch quality metrics.  more » « less
Award ID(s):
2013612
PAR ID:
10418342
Author(s) / Creator(s):
Date Published:
Journal Name:
Joint Proceedings of the ACM IUI Workshops 2023
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We propose and evaluate a lightweight strategy for tracing code that can be efficiently taught to novice programmers, building off of recent findings on "sketching" when tracing. This strategy helps novices apply the syntactic and semantic knowledge they are learning by encouraging line-by-line tracing and providing an external representation of memory for them to update. To evaluate the effect of teaching this strategy, we conducted a block-randomized experiment with 24 novices enrolled in a university-level CS1 course. We spent only 5-10 minutes introducing the strategy to the experimental condition. We then asked both conditions to think-aloud as they predicted the output of short programs. Students using this strategy scored on average 15% higher than students in the control group for the tracing problems used the study (p<0.05). Qualitative analysis of think-aloud and interview data showed that tracing systematically (line-by-line and "sketching" intermediate values) led to better performance and that the strategy scaffolded and encouraged systematic tracing. Students who learned the strategy also scored on average 7% higher on the course midterm. These findings suggest that in <1 hour and without computer-based tools, we can improve CS1 students' tracing abilities by explicitly teaching a strategy. 
    more » « less
  2. As the need for interdisciplinary collaboration increases, industry needs engineers who are not only affluent in technical engineering skills but also efficient in skills such as communication, problem-solving, engineering ethics, and business management. As a result, engineering programs are tasked with providing students with sufficient opportunities to develop non-technical professional skills to better prepare them for the workforce. Previous research has focused on exploring how and where students tend to develop profession skills and assessments have been established to measure the level of professional skills. However, without a means to measure whether students are getting sufficient opportunities for development, it is hard for educators and engineering programs to determine whether or where scaffolding are needed. We developed an instrument to assess undergraduate engineering students’ opportunities for professional skill development. To increase content validity, we conducted 20 think-aloud interviews with students from a large Midwestern university. The aim of this WIP is two-fold. We present the preliminary results of the think-aloud interview to determine what changes need to be made to existing items and what emerging themes appear regarding to participants’ professional skill development opportunities. After thematic analysis of the interview transcripts, we revised 10 items by simplifying the grammar or altering certain words that tend to confuse participants or carry negative connotations. We found that, compared to students who have only been involved in class projects, those with co-curricular experiences tend to report more opportunities in skills related to business management principles and problem-solving skills. Co-curricular activities were also the most referenced in building communication skills. Our next step will be piloting the instrument across multiple institutions and conducting validation analysis. 
    more » « less
  3. Students often face difficulties in transferring concepts, knowledge and skills between their courses. This difficulty is especially true of the fundamental math and science courses that are often taught outside the major of the student and without engineering context. At the same time, graduating engineers are moving into an increasingly interdisciplinary workplace that values the ability to work broadly across a range of contexts. More work is needed to better prepare students to adapt their knowledge and skills to new situations and to demonstrate how the various courses and concepts within their curricula relate. In this study, we ask students, teaching assistants and faculty to “think aloud” through their solution to a statics problem that requires mathematical knowledge to be transferred in order to be solved. Two faculty, two teaching assistants and seven undergraduate students are interviewed as they think aloud through the problem. Interview transcripts and solutions to the statics problem are then examined for themes and patterns in responses in order to draw conclusions about the challenges different populations face in transferring knowledge and solving such problems. Observations indicated that students could apply simple integration skills to find the area of a shape when given a curve describing its shape, but could not use integration to find the centroid. The participants did however recall being taught how to calculate centroids in the past and discussed a lack of usage of this skill causing their inability to recall it correctly. Student participants in general displayed simple approaches to problem solving based on reading the problem statement rather than following an engineering approach starting with governing equations. A potential barrier to problem solving success was identified in the varying symbols used by different research participants which could lead to a lack of understanding if these symbols are not clearly explained and defined in a classroom setting. Future work will further examine these themes, as well as developing prompts and activities to promote knowledge transfer and problem solving success. 
    more » « less
  4. null (Ed.)
    Effective gamification can only be based on understanding the relationship between learner motivation and the game elements which are used to gamify learning activities. Although frequently mentioned, Virtual Currency (VC) remains underused and scarcely studied in educational gamification. As a motivational affordance, VC can be thought of as supporting different types of motivation, but currently, there is a lack of empirical studies which investigate this. Recognizing this gap, the purpose of our study was to empirically investigate whether and how gamifying learning activities with virtual currency can engender motivation for out-of-class practicing and what type of motivation. In the limited research others have conducted, VC has been studied largely in combination with other game elements, which does not allow reaching reliable conclusions about the impact of the individual elements. For this reason, we studied the effects of VC in a gamified Discrete Math course isolated from other game elements. The study showed that using VC to gamify practicing increased students’ practicing activity, which resulted in improved academic performance. The study also revealed that while gamified practicing did not increase students’ intrinsic motivation, it supported internalization of motivation towards this learning activity. 
    more » « less
  5. This work-in-progress paper shares findings of the early stage of a 3-year research funded by the National Science Foundation. The major aim of the project is to advance engineering and mathematics (EM) education theory and practice related to students’ self-regulation of cognition and motivation skills during problem-solving activities. The self-regulation includes students’ metacognitive knowledge about task (MKT) and self-regulation of cognition (SRC). The motivational component of self-regulation (SRM) includes self-control of the motivation needed to maintain the level of engagement and deliberate practice necessary for scientific thinking and reasoning. To be effective problem-solvers, students must understand the relationship between the MKT, SRC and SRM throughout the problem-solving activities. Four research questions will guide the research: (1) How do students perceive their self-regulation of cognition (SRC) and motivation (SRM) skills for generic problem-solving activities in EM courses; (2) How does students’ metacognitive knowledge about problem-solving tasks (MKT) inform their Task interpretation?; (3) How do students’ SRC and SRM dynamically evolve?; and (4) How do students’ SRC and SRM reflect their perceptions of self-regulation of cognition and motivation for generic EM problemsolving activities? A sequential mixed-methods research design involving quantitative and qualitative methods are used to develop complementary coarse- and fine-grained understandings of undergraduate students’ SRC and SRM during academic problem-solving activities. Two 2nd year EM courses: Engineering Statics, and Ordinary Differential Equations were purposefully selected for the contexts of the study. One hundred forty two students from both courses were invited and participated in quantitative data collection using two validated surveys during spring 2022 semester. Later in the semester, qualitative data will be generated with twenty students in both courses through one-on-one interviews with students and course instructors, think-aloud protocols with students, and classroom observations. Coarse-grained understandings of students’ SRC and SRM are currently developed through analysis of quantitative data collected using self-report surveys (i.e., BRoMS and PMI). Fine-grained understandings of students’ SRC and SRM will be developed through analysis of qualitative data gathered via one-on-one interviews, think-aloud protocols, classroom observations, and course artifacts gathered as students engage in EM problem-solving activities. 
    more » « less