skip to main content


Title: White dwarf binaries suggest a common envelope efficiency α ∼ 1/3
ABSTRACT

Common envelope (CE) evolution, which is crucial in creating short-period binaries and associated astrophysical events, can be constrained by reverse modelling of such binaries’ formation histories. Through analysis of a sample of well-constrained white dwarf (WD) binaries with low-mass primaries (seven eclipsing double WDs, two non-eclipsing double WDs, one WD-brown dwarf), we estimate the CE energy efficiency αCE needed to unbind the hydrogen envelope. We use grids of He- and CO-core WD models to determine the masses and cooling ages that match each primary WD’s radius and temperature. Assuming gravitational wave-driven orbital decay, we then calculate the associated ranges in post-CE orbital period. By mapping WD models to a grid of red giant progenitor stars, we determine the total envelope binding energies and possible orbital periods at the point CE evolution is initiated, thereby constraining αCE. Assuming He-core WDs with progenitors of 0.9–2.0 M⊙, we find αCE ∼ 0.2–0.4 is consistent with each system we model. Significantly higher values of αCE are required for higher mass progenitors and for CO-core WDs, so these scenarios are deemed unlikely. Our values are mostly consistent with previous studies of post-CE WD binaries, and they suggest a nearly constant and low envelope ejection efficiency for CE events that produce He-core WDs.

 
more » « less
Award ID(s):
2205974
NSF-PAR ID:
10474506
Author(s) / Creator(s):
;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
518
Issue:
3
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 3966-3984
Size(s):
["p. 3966-3984"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Double white dwarf (WD) binaries are increasingly being discovered at short orbital periods where strong tidal effects and significant tidal heating signatures may occur. We assume that the tidal potential of the companion excites outgoing gravity waves within the WD primary, the dissipation of which leads to an increase in the WD’s surface temperature. We compute the excitation and dissipation of the waves in cooling WD models in evolvingMESAbinary simulations. Tidal heating is self-consistently computed and added to the models at every time step. As a binary inspirals to orbital periods less than ∼20 minutes, the WD’s behavior changes from cooling to heating, with temperature enhancements that can exceed 10,000 K compared with nontidally heated models. We compare a grid of tidally heated WD models to observed short-period systems with hot WD primaries. While tidal heating affects theirTeff, it is likely not the dominant luminosity. Instead, these WDs are probably intrinsically young and hot, implying that the binaries formed at short orbital periods. The binaries are consistent with undergoing common envelope evolution with a somewhat low efficiencyαCE. We delineate the parameter space where the traveling wave assumption is most valid, noting that it breaks down for WDs that cool sufficiently, where standing waves may instead be formed.

     
    more » « less
  2. null (Ed.)
    ABSTRACT We present high-resolution spectroscopy of two nearby white dwarfs with inconsistent spectroscopic and parallax distances. The first one, PG 1632+177, is a 13th magnitude white dwarf only 25.6 pc away. Previous spectroscopic observations failed to detect any radial velocity changes in this star. Here, we show that PG 1632+177 is a 2.05-d period double-lined spectroscopic binary (SB2) containing a low-mass He-core white dwarf with a more-massive, likely CO-core white dwarf companion. After L 870−2, PG 1632+177 becomes the second closest SB2 white dwarf currently known. Our second target, WD 1534+503, is also an SB2 system with an orbital period of 0.71 d. For each system, we constrain the atmospheric parameters of both components through a composite model-atmosphere analysis. We also present a new set of non-local thermodynamic equilibrium (NLTE) synthetic spectra appropriate for modelling high-resolution observations of cool white dwarfs, and show that NLTE effects in the core of the H α line increase with decreasing effective temperature. We discuss the orbital period and mass distribution of SB2 and eclipsing double white dwarfs with orbital constraints, and demonstrate that the observed population is consistent with the predicted period distribution from the binary population synthesis models. The latter predict more massive CO + CO white dwarf binaries at short (<1 d) periods, as well as binaries with several day orbital periods; such systems are still waiting to be discovered in large numbers. 
    more » « less
  3. The formation channels and predicted populations of double white dwarfs (DWDs) are important because a subset will evolve to be gravitational-wave sources and/or progenitors of Type Ia supernovae. Given the observed population of short-period DWDs, we calculate the outcomes of common envelope (CE) evolution when convective effects are included. For each observed white dwarf (WD) in a DWD system, we identify all progenitor stars with an equivalent proto-WD core mass from a comprehensive suite of stellar evolution models. With the second observed WD as the companion, we calculate the conditions under which convection can accommodate the energy released as the orbit decays, including (if necessary) how much the envelope must spin-up during the CE phase. The predicted post-CE final separations closely track the observed DWD orbital parameter space, further strengthening the view that convection is a key ingredient in CE evolution. 
    more » « less
  4. ABSTRACT

    Post-common envelope binaries (PCEBs) containing a white dwarf (WD) and a main-sequence (MS) star can constrain the physics of common envelope evolution and calibrate binary evolution models. Most PCEBs studied to date have short orbital periods (Porb ≲ 1 d), implying relatively inefficient harnessing of binaries’ orbital energy for envelope expulsion. Here, we present follow-up observations of five binaries from 3rd data release of Gaia mission containing solar-type MS stars and probable ultramassive WDs ($M\gtrsim 1.2\ {\rm M}_{\odot}$) with significantly wider orbits than previously known PCEBs, Porb = 18–49 d. The WD masses are much higher than expected for systems formed via stable mass transfer at these periods, and their near-circular orbits suggest partial tidal circularization when the WD progenitors were giants. These properties strongly suggest that the binaries are PCEBs. Forming PCEBs at such wide separations requires highly efficient envelope ejection, and we find that the observed periods can only be explained if a significant fraction of the energy released when the envelope recombines goes into ejecting it. Our one-dimensional stellar models including recombination energy confirm prior predictions that a wide range of PCEB orbital periods, extending up to months or years, can potentially result from Roche lobe overflow of a luminous asymptotic giant branch (AGB) star. This evolutionary scenario may also explain the formation of several wide WD + MS binaries discovered via self-lensing, as well as a significant fraction of post-AGB binaries and barium stars.

     
    more » « less
  5. Abstract We created the APOGEE-GALEX-Gaia catalog to study white dwarf (WD) binaries. This database aims to create a minimally biased sample of WD binary systems identified from a combination of GALEX, Gaia, and APOGEE data to increase the number of WD binaries with orbital parameters and chemical compositions. We identify 3414 sources as WD binary candidates, with nondegenerate companions of spectral types between F and M, including main-sequence stars, main-sequence binaries, subgiants, sub-subgiants, red giants, and red clump stars. Among our findings are (a) a total of 1806 systems having inferred WD radii R < 25 R ⊕ , which constitute a more reliable group of WD binary candidates within the main sample; (b) a difference in the metallicity distribution function between WD binary candidates and the control sample of most luminous giants ( M H < −3.0); (c) the existence of a population of sub-subgiants with WD companions; (d) evidence for shorter periods in binaries that contain WDs compared to those that do not, as shown by the cumulative distributions of APOGEE radial velocity shifts; (e) evidence for systemic orbital evolution in a sample of 252 WD binaries with orbital periods, based on differences in the period distribution between systems with red clump, main-sequence binary, and sub-subgiant companions and systems with main-sequence or red giant companions; and (f) evidence for chemical enrichment during common envelope (CE) evolution, shown by lower metallicities in wide WD binary candidates ( P > 100 days) compared to post-CE ( P < 100 days) WD binary candidates. 
    more » « less