skip to main content


Title: Constraints on the Frequency and Mass Content of r-process Events Derived from Turbulent Mixing in Galactic Disks
Abstract

Metal-poor stars in the Milky Way (MW) halo display large star-to-star dispersion in theirr-process abundance relative to lighter elements. This suggests a chemically diverse and unmixed interstellar medium (ISM) in the early universe. This study aims to help shed light on the impact of turbulent mixing, driven by core-collapse supernovae (cc-SNe), on ther-process abundance dispersal in galactic disks. To this end, we conduct a series of simulations of small-scale galaxy patches which resolve metal-mixing mechanisms at parsec scales. Our setup includes cc-SNe feedback and enrichment fromr-process sources. We find that the relative rate of ther-process events to cc-SNe is directly imprinted on the shape of ther-process distribution in the ISM with more frequent events causing more centrally peaked distributions. We consider also the fraction of metals that is lost on galactic winds and find that cc-SNe are able to efficiently launch highly enriched winds, especially in smaller galaxy models. This result suggests that smaller systems, e.g., dwarf galaxies, may require higher levels of enrichment in order to achieve similar meanr-process abundances as MW-like progenitors systems. Finally, we are able to place novel constraints on the production rate ofr-process elements in the MW,6×107Myr1ṁrp4.7×104Myr1, imposed by accurately reproducing the mean and dispersion of [Eu/Fe] in metal-poor stars. Our results are consistent with independent estimates from alternate methods and constitute a significant reduction in the permitted parameter space.

 
more » « less
Award ID(s):
1911206
NSF-PAR ID:
10418447
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
949
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 100
Size(s):
["Article No. 100"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    State transitions in black hole X-ray binaries are likely caused by gas evaporation from a thin accretion disk into a hot corona. We present a height-integrated version of this process, which is suitable for analytical and numerical studies. With radiusrscaled to Schwarzschild units and coronal mass accretion rateṁcto Eddington units, the results of the model are independent of black hole mass. State transitions should thus be similar in X-ray binaries and an active galactic nucleus. The corona solution consists of two power-law segments separated at a break radiusrb∼ 103(α/0.3)−2, whereαis the viscosity parameter. Gas evaporates from the disk to the corona forr>rb, and condenses back forr<rb. Atrb,ṁcreaches its maximum,ṁc,max0.02(α/0.3)3. If atrrbthe thin disk accretes withṁd<ṁc,max, then the disk evaporates fully before reachingrb, giving the hard state. Otherwise, the disk survives at all radii, giving the thermal state. While the basic model considers only bremsstrahlung cooling and viscous heating, we also discuss a more realistic model that includes Compton cooling and direct coronal heating by energy transport from the disk. Solutions are again independent of black hole mass, andrbremains unchanged. This model predicts strong coronal winds forr>rb, and aT∼ 5 × 108K Compton-cooled corona forr<rb. Two-temperature effects are ignored, but may be important at small radii.

     
    more » « less
  2. Abstract

    We measure the CO-to-H2conversion factor (αCO) in 37 galaxies at 2 kpc resolution, using the dust surface density inferred from far-infrared emission as a tracer of the gas surface density and assuming a constant dust-to-metal ratio. In total, we have ∼790 and ∼610 independent measurements ofαCOfor CO (2–1) and (1–0), respectively. The mean values forαCO (2–1)andαCO (1–0)are9.35.4+4.6and4.22.0+1.9Mpc2(Kkms1)1, respectively. The CO-intensity-weighted mean is 5.69 forαCO (2–1)and 3.33 forαCO (1–0). We examine howαCOscales with several physical quantities, e.g., the star formation rate (SFR), stellar mass, and dust-mass-weighted average interstellar radiation field strength (U¯). Among them,U¯, ΣSFR, and the integrated CO intensity (WCO) have the strongest anticorrelation with spatially resolvedαCO. We provide linear regression results toαCOfor all quantities tested. At galaxy-integrated scales, we observe significant correlations betweenαCOandWCO, metallicity,U¯, and ΣSFR. We also find thatαCOin each galaxy decreases with the stellar mass surface density (Σ) in high-surface-density regions (Σ≥ 100Mpc−2), following the power-law relationsαCO(21)Σ0.5andαCO(10)Σ0.2. The power-law index is insensitive to the assumed dust-to-metal ratio. We interpret the decrease inαCOwith increasing Σas a result of higher velocity dispersion compared to isolated, self-gravitating clouds due to the additional gravitational force from stellar sources, which leads to the reduction inαCO. The decrease inαCOat high Σis important for accurately assessing molecular gas content and star formation efficiency in the centers of galaxies, which bridge “Milky Way–like” to “starburst-like” conversion factors.

     
    more » « less
  3. Abstract

    We present a multiwavelength analysis of the galaxy cluster SPT-CL J0607-4448 (SPT0607), which is one of the most distant clusters discovered by the South Pole Telescope atz= 1.4010 ± 0.0028. The high-redshift cluster shows clear signs of being relaxed with well-regulated feedback from the active galactic nucleus (AGN) in the brightest cluster galaxy (BCG). Using Chandra X-ray data, we construct thermodynamic profiles and determine the properties of the intracluster medium. The cool-core nature of the cluster is supported by a centrally peaked density profile and low central entropy (K0=189+11keV cm2), which we estimate assuming an isothermal temperature profile due to the limited spectral information given the distance to the cluster. Using the density profile and gas cooling time inferred from the X-ray data, we find a mass-cooling rateṀcool=10060+90Myr−1. From optical spectroscopy and photometry around the [Oii] emission line, we estimate that the BCG star formation rate isSFR[OII]=1.70.6+1.0Myr−1, roughly two orders of magnitude lower than the predicted mass-cooling rate. In addition, using ATCA radio data at 2.1 GHz, we measure a radio jet powerPcav=3.21.3+2.1×1044erg s−1, which is consistent with the X-ray cooling luminosity (Lcool=1.90.5+0.2×1044erg s−1withinrcool= 43 kpc). These findings suggest that SPT0607 is a relaxed, cool-core cluster with AGN-regulated cooling at an epoch shortly after cluster formation, implying that the balance between cooling and feedback can be reached quickly. We discuss the implications for these findings on the evolution of AGN feedback in galaxy clusters.

     
    more » « less
  4. Abstract

    The repeating fast radio burst FRB 20190520B is an anomaly of the FRB population thanks to its high dispersion measure (DM = 1205 pc cm−3) despite its low redshift ofzfrb= 0.241. This excess has been attributed to a large host contribution of DMhost≈ 900 pc cm−3, far larger than any other known FRB. In this paper, we describe spectroscopic observations of the FRB 20190520B field obtained as part of the FLIMFLAM survey, which yielded 701 galaxy redshifts in the field. We find multiple foreground galaxy groups and clusters, for which we then estimated halo masses by comparing their richness with numerical simulations. We discover two separateMhalo> 1014Mgalaxy clusters atz= 0.1867 and 0.2170 that are directly intersected by the FRB sight line within their characteristic halo radiusr200. Subtracting off their estimated DM contributions, as well that of the diffuse intergalactic medium, we estimate a host contribution ofDMhost=430220+140or280170+140pccm3(observed frame), depending on whether we assume that the halo gas extends tor200or 2 ×r200. This significantly smaller DMhost—no longer the largest known value—is now consistent with Hαemission measures of the host galaxy without invoking unusually high gas temperatures. Combined with the observed FRB scattering timescale, we estimate the turbulent fluctuation and geometric amplification factor of the scattering layer to beF˜G4.511(pc2km)1/3, suggesting that most of the gas is close to the FRB host. This result illustrates the importance of incorporating foreground data for FRB analyses both for understanding the nature of FRBs and to realize their potential as a cosmological probe.

     
    more » « less
  5. Abstract

    We present high-cadence optical and ultraviolet (UV) observations of the Type II supernova (SN), SN 2022jox which exhibits early spectroscopic high-ionization flash features of Hi, Heii, Civ, and Nivthat disappear within the first few days after explosion. SN 2022jox was discovered by the Distance Less Than 40 Mpc survey ∼0.75 day after explosion with follow-up spectra and UV photometry obtained within minutes of discovery. The SN reached a peak brightness ofMV∼ −17.3 mag, and has an estimated56Ni mass of 0.04M, typical values for normal Type II SNe. The modeling of the early light curve and the strong flash signatures present in the optical spectra indicate interaction with circumstellar material (CSM) created from a progenitor with a mass-loss rate ofṀ103102Myr1. There may also be some indication of late-time CSM interaction in the form of an emission line blueward of Hαseen in spectra around 200 days. The mass-loss rate of SN 2022jox is much higher than the values typically associated with quiescent mass loss from red supergiants, the known progenitors of Type II SNe, but is comparable to inferred values from similar core-collapse SNe with flash features, suggesting an eruptive event or a superwind in the progenitor in the months or years before explosion.

     
    more » « less