skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Research Acceleration in Self‐Driving Labs: Technological Roadmap toward Accelerated Materials and Molecular Discovery
The urgency of finding solutions to global energy, sustainability, and healthcare challenges has motivated rethinking of the conventional chemistry and material science workflows. Self‐driving labs, emerged through integration of disruptive physical and digital technologies, including robotics, additive manufacturing, reaction miniaturization, and artificial intelligence, have the potential to accelerate the pace of materials and molecular discovery by 10–100X. Using autonomous robotic experimentation workflows, self‐driving labs enable access to a larger part of the chemical universe and reduce the time‐to‐solution through an iterative hypothesis formulation, intelligent experiment selection, and automated testing. By providing a data‐centric abstraction to the accelerated discovery cycle, in this perspective article, the required hardware and software technological infrastructure to unlock the true potential of self‐driving labs is discussed. In particular, process intensification as an accelerator mechanism for reaction modules of self‐driving labs and digitalization strategies to further accelerate the discovery cycle in chemical and materials sciences are discussed.  more » « less
Award ID(s):
1940959
PAR ID:
10418719
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Intelligent Systems
Volume:
5
Issue:
4
ISSN:
2640-4567
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Autonomous experimentation–or self-driving labs–offers a systematic approach to accelerate materials discovery by integrating automated synthesis, characterization, and data-driven decision-making. We present a closed-loop workflow for the on-demand synthesis and structural characterization of colloidal gold nanoparticles, enabling direct mapping from composition to nanoscale structure. Our framework leverages differentiable models of spectral shape to address two central tasks in self-driving labs: (a) phase mapping, or identifying compositional regions with distinct structural behavior; and (b) material retrosynthesis, or optimizing compositions for target structure. Using functional data analysis, we develop a data-driven model with generative pre-training, active learning, and high-throughput experiments to predict spectral responses across composition space. We demonstrate the approach on seed-mediated growth of gold nanoparticles, showcasing its ability to extract design rules, reveal secondary interactions, and efficiently navigate morphology space. Gradient-based optimization of the models enables inverse design, making this a unified platform. 
    more » « less
  2. Powder X‐ray diffraction (pXRD) experiments are a cornerstone for materials structure characterization. Despite their widespread application, analyzing pXRD diffractograms still presents a significant challenge to automation and a bottleneck in high‐throughput discovery in self‐driving labs. Machine learning promises to resolve this bottleneck by enabling automated powder diffraction analysis. A notable difficulty in applying machine learning to this domain is the lack of sufficiently sized experimental datasets, which has constrained researchers to train primarily on simulated data. However, models trained on simulated pXRD patterns showed limited generalization to experimental patterns, particularly for low‐quality experimental patterns with high noise levels and elevated backgrounds. With the Open Experimental Powder X‐ray Diffraction Database (opXRD), we provide an openly available and easily accessible dataset of labeled and unlabeled experimental powder diffractograms. Labeled opXRD data can be used to evaluate the performance of models on experimental data and unlabeled opXRD data can help improve the performance of models on experimental data, for example, through transfer learning methods. We collected 92,552 diffractograms, 2179 of them labeled, from a wide spectrum of material classes. We hope this ongoing effort can guide machine learning research toward fully automated analysis of pXRD data and thus enable future self‐driving materials labs. 
    more » « less
  3. Large scale observatories are shared-use resources that provide open access to data from geographically distributed sensors and instruments. This data has the potential to accelerate scientific discovery. However, seamlessly integrating the data into scientific workflows remains a challenge. In this paper, we summarize our ongoing work in supporting data-driven and data-intensive workflows and outline our vision for how these observatories can improve large-scale science. Specifically, we present programming abstractions and runtime management services to enable the automatic integration of data in scientific workflows. Further, we show how approximation techniques can be used to address network and processing variations by studying constraint limitations and their associated latencies. We use the Ocean Observatories Initiative (OOI) as a driving use case for this work. 
    more » « less
  4. Abstract In the last several years, there has been a surge in the development of machine learning potential (MLP) models for describing molecular systems. We are interested in a particular area of this field — the training of system‐specific MLPs for reactive systems — with the goal of using these MLPs to accelerate free energy simulations of chemical and enzyme reactions. To help new members in our labs become familiar with the basic techniques, we have put together a self‐guided Colab tutorial (https://cc-ats.github.io/mlp_tutorial/), which we expect to be also useful to other young researchers in the community. Our tutorial begins with the introduction of simple feedforward neural network (FNN) and kernel‐based (using Gaussian process regression, GPR) models by fitting the two‐dimensional Müller‐Brown potential. Subsequently, two simple descriptors are presented for extracting features of molecular systems: symmetry functions (including the ANI variant) and embedding neural networks (such as DeepPot‐SE). Lastly, these features will be fed into FNN and GPR models to reproduce the energies and forces for the molecular configurations in a Claisen rearrangement reaction. 
    more » « less
  5. Reducing the use of solvents is an important aim of green chemistry. Using micelles self-assembled from amphiphilic molecules dispersed in water (considered a green solvent) has facilitated reactions of organic compounds. When performing reactions in micelles, the hydrophobic effect can considerably accelerate apparent reaction rates, as well as enhance selectivity. Here, we review micellar reaction media and their potential role in sustainable chemical production. The focus of this review is applications of engineered amphiphilic systems for reactions (surface-active ionic liquids, designer surfactants, and block copolymers) as reaction media. Micelles are a versatile platform for performing a large array of organic chemistries using water as the bulk solvent. Building on this foundation, synthetic sequences combining several reaction steps in one pot have been developed. Telescoping multiple reactions can reduce solvent waste by limiting the volume of solvents, as well as eliminating purification processes. Thus, in particular, we review recent advances in “one-pot” multistep reactions achieved using micellar reaction media with potential applications in medicinal chemistry and agrochemistry. Photocatalyzed reactions in micellar reaction media are also discussed. In addition to the use of micelles, we emphasize the process (steps to isolate the product and reuse the catalyst). 
    more » « less