Mixed metal oxyhalides are an exciting class of photocatalysts, capable of the sustainable generation of fuels and remediation of pollutants with solar energy. Bismuth oxyhalides of the types Bi4MO8X (M = Nb and Ta; X = Cl and Br) and Bi2AO4X (A = most lanthanides; X = Cl, Br, and I) have an electronic structure that imparts photostability, as their valence band maxima (VBM) are composed of O 2p orbitals rather than X np orbitals that typify many other bismuth oxyhalides. Here, flux-based synthesis of intergrowth Bi4NbO8Cl–Bi2GdO4Cl is reported, testing the hypothesis that both intergrowth stoichiometry and M identity serve as levers toward tunable optoelectronic properties. X-ray scattering and atomically resolved electron microscopy verify intergrowth formation. Facile manipulation of the Bi4NbO8Cl-to-Bi2GdO4Cl ratio is achieved with the specific ratio influencing both the crystal and electronic structures of the intergrowths. This compositional flexibility and crystal structure engineering can be leveraged for photocatalytic applications, with comparisons to the previously reported Bi4TaO8Cl–Bi2GdO4Cl intergrowth revealing how subtle structural and compositional features can impact photocatalytic materials.
more »
« less
Local structure analysis and structure mining for design of photocatalytic metal oxychloride intergrowths
In this work, the local structures of durable, high-activity Bi 4 TaO 8 Cl–Bi 2 GdO 4 Cl intergrowth photocatalysts that were prepared in a molten flux are determined by pair distribution function analysis of X-ray total scattering data and correlated to their photocatalytic performance. This system gives understanding to how the local structure of photocatalysts can be manipulated controllably through incorporation of rigid and flexible layers via intergrowth formation to achieve high activity. This analysis revealed that the local symmetry and distortion of the [TaO 6 ] octahedra introduced through intergrowth formation and dictated by intergrowth stoichiometry correlate with their photocatalytic activity. That is, the greater the Ta–O–Ta bond angles, the higher the photocatalytic activity of a given intergrowth for the oxygen evolution reaction. Moreover, greater tilting of the [TaO 6 ] octahedra is associated with a larger band gap. This analysis was coupled with a structure mining approach to model the intergrowth structure by building supercells for refinement of the X-ray diffraction data. This analysis found that Ta- and Gd-domains are separated within the intergrowths, with large Gd-domains separated by small Ta-domains at high Gd% and the opposite for high Ta%. Taken together with Williamson–Hall analysis, our results highlight that the local structure of layered materials can be modulated through strain engineering enabled by the selection of rigid and flexible intergrowth layers, providing a new design pathway to high performance photocatalysts.
more »
« less
- PAR ID:
- 10418751
- Date Published:
- Journal Name:
- Journal of Materials Chemistry A
- Volume:
- 10
- Issue:
- 43
- ISSN:
- 2050-7488
- Page Range / eLocation ID:
- 23212 to 23221
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Multimetal oxyhalide intergrowths show promise for photocatalytic water splitting. However, the relationships between intergrowth stoichiometry and their electronic and nanoscale structures are yet to be identified. This study investigates Bi4TaO8Cl–Bi2GdO4Cl intergrowths and demonstrates that stoichiometry controls the tilting of [TaO6] octahedra, influencing the bandgap of the photocatalyst and its valence and conduction band positions. To determine how the [TaO6] octahedral tilting in the intergrowths manifests as a function of intergrowth stoichiometry, we investigated changes in crystal symmetry by analyzing features arising at the higher order Laue zone (HOLZ) of convergent-beam electron diffraction patterns. Higher Ta content intergrowths displayed a more intense outer HOLZ ring compared to lower Ta content intergrowths, indicating transformation from P21cn (orthorhombic) to P4/mmm (tetragonal). This finding suggests that more distortion occurs along the ⟨001⟩ directions of the crystal than the ⟨100⟩ and ⟨010⟩ directions. This variation directly impacts the electronic structure, affecting both conduction and valence band energy levels. By combining ultraviolet photoelectron spectroscopy, UV-visible diffuse reflectance spectroscopy, and electron energy loss spectroscopy, the absolute band positions of the intergrowths were determined. Agreement between the bandgaps obtained via ensemble and nanoscale measurements indicates nanoscale homogeneity of the electronic structure. Overall, the integrated approach establishes that the bandgap energy increases with increasing Ta content, which is correlated with the crystal symmetry and [TaO6] octahedral tilting. Broadly, the modular nature of intergrowths provides building block layers to tune octahedral tilting within perovskite layers for manipulation of optoelectronic properties.more » « less
-
The synthesis, crystal structures, and optical properties of four ternary and six quaternary halides containing the Rh3+ ion are reported here. Rb3RhCl6 adopts a monoclinic structure with isolated [RhCl6]3− octahedra. Rb3Rh2Cl9, Cs3Rh2Cl9, and Cs3Rh2Br9 crystallize in a vacancy ordered variant of the 6H hexagonal perovskite structure, which contains isolated Rh2X93− (X = Cl, Br) dimers of face-sharing octahedra. Cs2AgRhCl6 and Cs2NaRhCl6 adopt the 12R rhombohedral perovskite structure, featuring [M2RhCl12]7− face-sharing octahedral trimers, connected to one another through rhodium-centered octahedra. A4AgRhCl8 and A4AgRhBr8 (A = CH3CH2CH2CH2NH3+, (CH3)2CHCH2CH2NH3)+) crystallize in a cation-ordered variant of the n = 1 Ruddlesden Popper structure, which features layers of corner-connected octahedra with a chessboard ordering of Ag+ and Rh3+ ions separated by double layers of organic cations. The diffuse reflectance spectra of all compositions studied feature peaks in the visible that can be attributed to spin-allowed d-to-d transitions and peaks in the UV that arise from charge transfer transitions. Electronic structure calculations reveal moderate Rh–X–Ag hybridization when rhodium- and silver-centered octahedra share corners, but minimal hybridization when they share faces. Many of the compositions studied have an electronic structure that is effectively zero-dimensional, but Cs2AgRhCl6 is found to possess a two-dimensional electronic structure. The results are instructive for controlling the electronic dimensionality of compositionally complex halide perovskite derivatives.more » « less
-
Bi2NiMnO6(BNMO) epitaxial thin films with a layered supercell (LSC) structure have emerged as a promising single‐phase multiferroic material recently. Because of the required strain state for the formation of the LSC structures, most of the previous BNMO films are demonstrated on rigid oxide substrates such as SrTiO3and LaAlO3. Here, the potential of BNMO films grown on muscovite mica substrates via van der Waals epitaxy, spotlighting their suitability for cutting‐edge flexible device applications is delved. Comprehensive scanning transmission electron microscopy/energy‐dispersive X‐ray analyses reveal a layered structure in the BNMO film and a pristine interface with the mica substrate, indicating high‐quality deposition and minimal interfacial defects. Capitalizing on its unique property of easily cleavable layers due to weak van der Waals forces in mica substrates, flexible BNMO/mica samples are fixed. A standout feature of the BNMO film grown on mica substrate is its consistent multiferroic properties across varied mechanical conditions. A novel technique is introduced for thinning the mica substrate and subsequent transfer of the sample, with post‐transfer analyses validating the preserved structural and magnetic attributes of the film. Overall, this study illuminates the resilient multiferroic properties of BNMO films on mica, offering promising avenues for their integration for next‐generation flexible electronics.more » « less
-
Crystalline and 3D continuous mesoporous quaternary CsTaWO6semiconductors are prepared with different degrees of long‐range periodic order and local order, respectively, to investigate the influence of periodic pore order on the photocatalytic performance in hydrogen evolution of mesoporous photocatalysts. The degree of long‐range order of the mesopores is changed by modifying the ratio between metal precursors and soft polymer template poly(isoprene‐b‐styrene‐b‐ethylene oxide) (PI‐b‐PS‐b‐PEO; ISO) in the sol–gel synthesis. Long‐range periodic order is found to have no appreciable advantage compared with an only locally ordered continuous pore system. On the contrary, nonperiodically ordered mesopores result in higher activity toward photocatalytic hydrogen evolution, even with slightly smaller pore diameter and lower cumulative pore volume. Most importantly, it is shown that pore connectivity and heterogeneous pore systems in mesoporous photocatalysts play a major role for hydrogen evolution when other parameters are confirmed to be not rate limiting.more » « less