Abstract Fundamental understanding of mechanochemical reactivity is important for designing new mechanophores. Besides the core structure of mechanophores, substituents on a mechanophore can affect its mechanochemical reactivity through electronic stabilization of the intermediate or effectiveness of force transduction from the polymer backbone to the mechanophore. The latter factor represents a unique mechanical effect in considering polymer mechanochemistry. Here, we show that regioisomeric linkage that is not directly adjacent to the first cleaving bond in cyclobutane can still significantly affect the mechanochemical reactivity of the mechanophore. We synthesized three non‐scissile 1,2‐diphenyl cyclobutanes, varying their linkage to the polymer backbone via theo,m, orp‐position of the diphenyl substituents. Even though the regioisomers share the same substituted cyclobutane core structure and similar electronic stabilization of the diradical intermediate from cleaving the first C−C bond, thepisomer exhibited significantly higher mechanochemical reactivity than theoandmisomers. The observed difference in reactivity can be rationalized as the much more effective force transduction to the scissile bond through thep‐position than the other two substitution positions. These findings point to the importance of considering force‐bearing linkages that are more distant from the bond to be cleaved when incorporating mechanophores into polymer backbones.
more »
« less
Synthesis and mechanochemical inertness of a Zn ( II ) bidipyrrin double helix
Abstract Helices are unique structures that play important roles in biomacromolecules and chiral catalysis. The mechanochemical unfolding of helical structures has attracted the attention of chemists in the past few years. However, it is limited to a few cases which investigated how the mechanochemical reactivity is impacted by helical configurations. No synthetic helical mechanophore is reported. Herein, a Zn (II) bidipyrrin (BDPR‐Zn) double helix is designed as a potential mechanophore. A cyclic olefin containing a doubly strapped BDPR‐Zn is prepared and used for ring‐opening metathesis polymerization. The corresponding polymer is subjected to pulsed ultrasonication for mechanochemical testing. The sonication results reveal the mechanochemical inertness of BDPR‐Zn unit, which is further supported by force‐coupled simulation. Although no obvious activation is observed, our preliminary results on BDPR‐Zn unit could inspire further rational designs on force‐induced helix unfolding.
more »
« less
- Award ID(s):
- 2204079
- PAR ID:
- 10418776
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Journal of Polymer Science
- Volume:
- 61
- Issue:
- 15
- ISSN:
- 2642-4150
- Page Range / eLocation ID:
- p. 1547-1553
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Polymers that release small molecules in response to mechanical force are promising candidates as next-generation on-demand delivery systems. Despite advancements in the development of mechanophores for releasing diverse payloads through careful molecular design, the availability of scaffolds capable of discharging biomedically significant cargos in substantial quantities remains scarce. In this report, we detail a nonscissile mechanophore built from an 8-thiabicyclo[3.2.1]octane 8,8-dioxide (TBO) motif that releases one equivalent of sulfur dioxide (SO2) from each repeat unit. The TBO mechanophore exhibits high thermal stability but is activated mechanochemically using solution ultrasonication in either organic solvent or aqueous media with up to 63% efficiency, equating to 206 molecules of SO2 released per 143.3 kDa chain. We quantified the mechanochemical reactivity of TBO by single-molecule force spectroscopy and resolved its single-event activation. The force-coupled rate constant for TBO opening reaches ∼9.0 s–1 at ∼1520 pN, and each reaction of a single TBO domain releases a stored length of ∼0.68 nm. We investigated the mechanism of TBO activation using ab initio steered molecular dynamic simulations and rationalized the observed stereoselectivity. These comprehensive studies of the TBO mechanophore provide a mechanically coupled mechanism of multi-SO2 release from one polymer chain, facilitating the translation of polymer mechanochemistry to potential biomedical applications.more » « less
-
Abstract De novodesign provides an attractive approach, which allows one to test and refine the principles guiding metalloproteins in defining the geometry and reactivity of their metal ion cofactors. Although impressive progress has been made in designing proteins that bind transition metal ions including iron–sulfur clusters, the design of tetranuclear clusters with oxygen‐rich environments remains in its infancy. In previous work, we described the design of homotetrameric four‐helix bundles that bind tetra‐Zn2+clusters. The crystal structures of the helical proteins were in good agreement with the overall design, and the metal‐binding and conformational properties of the helical bundles in solution were consistent with the crystal structures. However, the correspondingapo‐proteins were not fully folded in solution. In this work, we design three peptides, based on the crystal structure of the original bundles. One of the peptides forms tetramers in aqueous solution in the absence of metal ions as assessed by CD and NMR. It also binds Zn2+in the intended stoichiometry. These studies strongly suggest that the desired structure has been achieved in theapostate, providing evidence that the peptide is able to actively impart the designed geometry to the metal cluster.more » « less
-
Abstract The arrangement of nucleosomes inside chromatin is of extensive interest. While in vitro experiments have revealed the formation of 30 nm fibers, most in vivo studies have failed to confirm their presence in cell nuclei. To reconcile the diverging experimental findings, we characterized chromatin organization using a residue-level coarse-grained model. The computed force–extension curve matches well with measurements from single-molecule experiments. Notably, we found that a dodeca-nucleosome in the two-helix zigzag conformation breaks into structures with nucleosome clutches and a mix of trimers and tetramers under tension. Such unfolded configurations can also be stabilized through trans interactions with other chromatin chains. Our study suggests that unfolding from chromatin fibers could contribute to the irregularity of in vivo chromatin configurations. We further revealed that chromatin segments with fibril or clutch structures engaged in distinct binding modes and discussed the implications of these inter-chain interactions for a potential sol–gel phase transition.more » « less
-
a) Abstract DnaK is a prokaryotic Hsp70 chaperone, with numerous functions in helping to fold nascent polypeptides and more generally in proteostasis. It also restores native structures to heat-shocked proteins in an ATP-hydrolysis-dependent manner. The structures of DnaK complexes with nucleotides, co-chaperones andsmallpeptides have already been resolved. However, there are no structures of DnaK complexes with larger, mostly folded substrates, such as firefly luciferase (Fluc, 61 kDa), which impedes the understanding of the mechanism through which DnaK refolds such large proteins. Here, we generated a model of a DnaK-firefly luciferase complex with Alphafold3, and examined its dynamics with all-atom molecular dynamics simulations. In this complex, Fluc is immobilized under the DnaK alpha-helical lid against the NBD, not the SBDβ, contrary to the data reported in the literature for model peptides. The DnaK lid is positioned strategically over Fluc’s helix 405-411, which we recently determined to be the first (and likely the only) helix melted in Fluc at 42 °C. We simulated the interaction between DnaK and the helix in its native and misfolded state and found that during the lid translocation toward the SBDβ, only the melted helix follows the lid and is actively pulled out from Fluc, while the native helix is not dislocated. These observations suggest a new model for the DnaK chaperone mechanism, where the alpha helical lid forms hydrogen bonds to the protein segment to be structurally tested. Lid pulls out only highly deformable misfolded helices, allowing them to refold into their native structures, and does not pull out those that are correctly folded because they are not deformable. Broader Audience Statementc) DnaK is a model chaperone, which can reactivate thermally denatured proteins. Even though a plethora of significant findings about DnaK structure, dynamics and interactions with its co-chaperone have been accumulated over 30 years, the exact molecular mechanism by which DnaK refolds misfolded proteins remains a mystery. This work exploited the ability of the Alphafold3 platform to generate an atomistic model for a complex between DnaK and Firefly luciferase and used molecular dynamics simulations to directly capture how DnaK may assist denatured proteins by mechanically pulling out their misfolded helices. This study provides a new insight into the DnaK mechanism.more » « less
An official website of the United States government
