Abstract The synthesis and reactivity of 3,8‐dibromo‐dodecafluoro‐benzo‐fused BOPHY2are reported, via SNAr with O‐, N‐ S‐ and C‐nucleophiles, and in Pd(0)‐catalyzed cross‐coupling reactions (Suzuki and Stille). The resulting perfluoro‐BOPHY derivatives were investigated for their reactivity in the presence of various nucleophiles. BOPHY3displays reversible color change and fluorescence quenching in the presence of bases (Et3N, DBU), whereas BOPHY7reacts preferentially at the α‐pyrrolic positions, and BOPHY8undergoes regioselective fluorine substitution in the presence of thiols. The structural and electronic features of the fluorinated BOPHYs were studied by TD‐DFT computations. In addition, their spectroscopic and cellular properties were investigated; BOPHY10shows the most red‐shifted absorption/emission (λmax659/699 nm) and7the highest fluorescence (Φf=0.95), while all compounds studied showed low cytotoxicity toward human HEp2 cells and were efficiently internalized.
more »
« less
Detection of cancer‐associated miRNA using a fluorescence switch of AgNC@NA and guanine‐rich overhang sequences
Abstract DNA‐templated silver nanoclusters (AgNC@DNA) are a novel type of nanomaterial with advantageous optical properties. Only a few atoms in size, the fluorescence of nanoclusters can be tuned using DNA overhangs. In this study, we explored the properties of AgNCs manufactured on a short single‐stranded (dC)12when adjacent G‐rich sequences (dGN, withN = 3–15) were added. The ‘red’ emission of AgNC@dC12with λMAX = 660 nm dramatically changed upon the addition of a G‐rich overhang with NG = 15. The pattern of the emission–excitation matrix (EEM) suggested the emergence of two new emissive states at λMAX = 575 nm and λMAX = 710 nm. The appearance of these peaks provides an effective way to design biosensors capable of detecting specific nucleic acid sequences with low fluorescence backgrounds. We used this property to construct an NA‐based switch that brings AgNC and the G overhang near one another, turning ‘ON’ the new fluorescence peaks only when a specific miRNA sequence is present. Next, we tested this detection switch on miR‐371, which is overexpressed in prostate cancer. The results presented provide evidence that this novel fluorescent switch is both sensitive and specific with a limit of detection close to 22 picomoles of the target miR‐371 molecule.
more »
« less
- Award ID(s):
- 2204027
- PAR ID:
- 10418783
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Luminescence
- Volume:
- 38
- Issue:
- 7
- ISSN:
- 1522-7235
- Page Range / eLocation ID:
- p. 1385-1392
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Silver nanoclusters (AgNCs) are the next-generation nanomaterials representing supra-atomic structures where silver atoms are organized in a particular geometry. DNA can effectively template and stabilize these novel fluorescent AgNCs. Only a few atoms in size – the properties of nanoclusters can be tuned using only single nucleobase replacement of C-rich templating DNA sequences. A high degree of control over the structure of AgNC could greatly contribute to the ability to fine-tune the properties of silver nanoclusters. In this study, we explore the properties of AgNCs formed on a short DNA sequence with a C 12 hairpin loop structure (AgNC@hpC 12 ). We identify three types of cytosines based on their involvement in the stabilization of AgNCs. Computational and experimental results suggest an elongated cluster shape with 10 silver atoms. We found that the properties of the AgNCs depend on the overall structure and relative position of the silver atoms. The emission pattern of the AgNCs depends strongly on the charge distribution, while all silver atoms and some DNA bases are involved in optical transitions based on molecular orbital (MO) visualization. We also characterize the antibacterial properties of silver nanoclusters and propose a possible mechanism of action based on the interactions of AgNCs with molecular oxygen.more » « less
-
Abstract CRISPR-Cas12a can induce nonspecific trans-cleavage of dsDNA substrate, including long and stable λ DNA. However, the mechanism behind this is still largely undetermined. In this study, we observed that while trans-activated Cas12a didn’t cleave blunt-end dsDNA within a short reaction time, it could degrade dsDNA reporters with a short overhang. More interestingly, we discovered that the location of the overhang also affected the susceptibility of dsDNA substrate to trans-activated Cas12a. Cas12a trans-cleaved 3′ overhang dsDNA substrates at least 3 times faster than 5′ overhang substrates. We attributed this unique preference of overhang location to the directional trans-cleavage behavior of Cas12a, which may be governed by RuvC and Nuc domains. Utilizing this new finding, we designed a new hybrid DNA reporter as nonoptical substrate for the CRISPR-Cas12a detection platform, which sensitively detected ssDNA targets at sub picomolar level. This study not only unfolded new insight into the trans-cleavage behavior of Cas12a but also demonstrated a sensitive CRISPR-Cas12a assay by using a hybrid dsDNA reporter molecule.more » « less
-
The presence of poly‐ and perfluoroalkyl substances (PFAS) in the environment is associated with adverse health effects but measuring PFAS is challenging due to the associated high cost and technical complexities of the analysis. Here, the reactivity of atomically precise metal‐oxo clusters is reported and the foundation for their use is provided as fluorescent nanosensors for PFAS detection. The material comprises crystalline, water soluble, hexanuclear cerium‐oxo clusters [Ce6(µ3‐O)4(µ3‐OH)4]12+decorated with glycine molecules (Ce‐Gly) characterized by fluorescence emission at 353 nm. The Ce‐Gly fluorescence is found sensitive to long chain carboxylated PFAS of CF3–(CF2)n–, where n ≥ 6, such as perfluorooctanoic, perfluorononanoic and perfluorodecanoic acids. This unique reactivity leads to a change in the emission spectra in a concentration dependent manner, enabling PFAS detection through ligand exchange and aggregation‐induced emission (AIE) enhancement. No significant cross‐reactivity from potentially co‐existing species, including sulfonated PFAS, octanoic and dodecanoic acids, humic acid, and inorganic ions is observed. With an optimal concentration of 3.3 µg mL−1Ce‐Gly, the method demonstrated detection limits of 0.24 ppb for PFOA and 0.4 ppb for PFNA. These findings highlight the potential of fluorescence‐based detection strategies utilizing nanoscale probes such as Ce‐Gly as fluorescent probes and nanosensors for PFAS.more » « less