Animals that move through complex habitats must frequently contend with obstacles in their path. Humans and other highly cognitive vertebrates avoid collisions by perceiving the relationship between the layout of their surroundings and the properties of their own body profile and action capacity. It is unknown whether insects, which have much smaller brains, possess such abilities. We used bumblebees, which vary widely in body size and regularly forage in dense vegetation, to investigate whether flying insects consider their own size when interacting with their surroundings. Bumblebees trained to fly in a tunnel were sporadically presented with an obstructing wall containing a gap that varied in width. Bees successfully flew through narrow gaps, even those that were much smaller than their wingspans, by first performing lateral scanning (side-to-side flights) to visually assess the aperture. Bees then reoriented their in-flight posture (i.e., yaw or heading angle) while passing through, minimizing their projected frontal width and mitigating collisions; in extreme cases, bees flew entirely sideways through the gap. Both the time that bees spent scanning during their approach and the extent to which they reoriented themselves to pass through the gap were determined not by the absolute size of the gap, but by the size of the gap relative to each bee’s own wingspan. Our findings suggest that, similar to humans and other vertebrates, flying bumblebees perceive the affordance of their surroundings relative their body size and form to navigate safely through complex environments. 
                        more » 
                        « less   
                    
                            
                            Bumblebees display characteristics of active vision during robust obstacle avoidance flight
                        
                    
    
            ABSTRACT Insects are remarkable flyers and capable of navigating through highly cluttered environments. We tracked the head and thorax of bumblebees freely flying in a tunnel containing vertically oriented obstacles to uncover the sensorimotor strategies used for obstacle detection and collision avoidance. Bumblebees presented all the characteristics of active vision during flight by stabilizing their head relative to the external environment and maintained close alignment between their gaze and flightpath. Head stabilization increased motion contrast of nearby features against the background to enable obstacle detection. As bees approached obstacles, they appeared to modulate avoidance responses based on the relative retinal expansion velocity (RREV) of obstacles and their maximum evasion acceleration was linearly related to RREVmax. Finally, bees prevented collisions through rapid roll manoeuvres implemented by their thorax. Overall, the combination of visuo-motor strategies of bumblebees highlights elegant solutions developed by insects for visually guided flight through cluttered environments. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1849446
- PAR ID:
- 10418884
- Date Published:
- Journal Name:
- Journal of Experimental Biology
- Volume:
- 225
- Issue:
- 4
- ISSN:
- 0022-0949
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Flying insects often forage among cluttered vegetation that forms a series of obstacles in their flight path. Recent studies have focused on behaviors needed to navigate clutter while avoiding all physical contact and, as a result, we know little about flight behaviors that do involve encounters with obstacles. Here, we challenged carpenter bees (Xylocopa varipuncta) to fly through narrow gaps in an obstacle course to determine the kinds of obstacle encounters they experience, as well as the consequences for flight performance. We observed three kinds of encounters: leg, body and wing collisions. Wing collisions occurred most frequently (in about 40% of flights, up to 25 times per flight) but these had little effect on flight speed or body orientation. In contrast, body and leg collisions, which each occurred in about 20% of flights (1–2 times per flight), resulted in decreased flight speeds and increased rates of body rotation (yaw). Wing and body collisions, but not leg collisions, were more likely to occur in wind versus still air. Thus, physical encounters with obstacles may be a frequent occurrence for insects flying in some environments, and the immediate effects of these encounters on flight performance depend on the body part involved.more » « less
- 
            ABSTRACT Foraging insects fly over long distances through complex aerial environments, and many can maintain constant ground speeds in wind, allowing them to gauge flight distance. Although insects encounter winds from all directions in the wild, most lab-based studies have employed still air or headwinds (i.e. upwind flight); additionally, insects are typically compelled to fly in a single, fixed environment, so we know little about their preferences for different flight conditions. We used automated video collection and analysis methods and a two-choice flight tunnel paradigm to examine thousands of foraging flights performed by hundreds of bumblebees flying upwind and downwind. In contrast to the preference for flying with a tailwind (i.e. downwind) displayed by migrating insects, we found that bees prefer to fly upwind. Bees maintained constant ground speeds when flying upwind or downwind in flow velocities from 0 to 2 m s−1 by adjusting their body angle, pitching down to raise their air speed above flow velocity when flying upwind, and pitching up to slow down to negative air speeds (flying backwards relative to the flow) when flying downwind. Bees flying downwind displayed higher variability in body angle, air speed and ground speed. Taken together, bees' preference for upwind flight and their increased kinematic variability when flying downwind suggest that tailwinds may impose a significant, underexplored flight challenge to bees. Our study demonstrates the types of questions that can be addressed with newer approaches to biomechanics research; by allowing bees to choose the conditions they prefer to traverse and automating filming and analysis to examine massive amounts of data, we were able to identify significant patterns emerging from variable locomotory behaviors, and gain valuable insight into the biomechanics of flight in natural environments.more » « less
- 
            Abstract Flying insects have a robust flight system that allows them to fly even when their forewings are damaged. The insect must adjust wingbeat kinematics to aerodynamically compensate for the loss of wing area. However, the mechanisms that allow insects with asynchronous flight muscle to adapt to wing damage are not well understood. Here, we investigated the phase and amplitude relationships between thorax deformation and flapping angle in tethered flying bumblebees subject to wing clipping and weighting. We used synchronized laser vibrometry and high-speed videography to measure thorax deformation and flapping angle, respectively. We found that changes in wing inertia did not affect thorax deformation amplitude but did influence wingbeat frequency. Increasing wing inertia increased flapping amplitude and caused a phase lag between thorax deformation and flapping angle, whereas decreasing wing inertia did not affect flapping amplitude and caused the flapping angle to lead thorax deformation. Our findings indicate that bumblebees adapt to wing damage by adjusting their wingbeat frequency rather than altering their wing stroke amplitude. Additionally, our results suggest that bumblebees operate near a wing-hinge-dominated resonant frequency, and that moments generated by steering muscles within the wing hinge influence the phase between thorax deformation and wing stroke nontrivially. These insights can inform the design of resilient, insect-inspired flapping-wing micro air vehicles.more » « less
- 
            O’Donnell, Sean (Ed.)Abstract Variation in body size has important implications for physical performance and fitness. For insects, adult size and morphology are determined by larval growth and metamorphosis. Female blue orchard bees, Osmia lignaria, (Say) provision a finite quantity of food to their offspring. In this study, we asked how provision-dependent variation in size changes adult morphology. We performed a diet manipulation in which some larvae were starved in the final instar and some were given unlimited food. We examined the consequences on adult morphology in two ways. First, allometric relationships between major body regions (head, thorax, abdomen) and total body mass were measured to determine relative growth of these structures. Second, morphometrics that are critical for flight (wing area, wing loading, and extra flight power index) were quantified. Head and thorax mass had hyperallometric relationships with body size, indicating these parts become disproportionately large in adults when larvae are given copious provisions. However, abdominal mass and wing area increased hypoallometrically with body size. Thus, large adults had disproportionately lighter abdomens and smaller wing areas than smaller adults. Though both males and females followed these general patterns, allometric patterns were affected by sex. For flight metrics, small adults had reduced wing loading and an increased extra flight power index. These results suggest that diet quantity alters development in ways that affect the morphometric trait relationships in adult O. lignaria and may lead to functional differences in performance.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    