skip to main content

This content will become publicly available on February 9, 2024

Title: Machine Learning Enables Multi‐Degree‐of‐Freedom Reconfigurable Terahertz Holograms with Cascaded Diffractive Optical Elements
Abstract

Machine learning can empower the design of cascaded diffractive optical elements (DOEs) at terahertz frequencies enabling the realization of holograms with a tailored multi‐degree‐of‐freedom reconfigurable operation when altering either the number, spacing, rotational alignment, and/or order of the elements. This unprecedented control over the spatial terahertz light distribution can profoundly impact multiple terahertz applications such as signal multiplexing, imaging, and displays. This work demonstrates this multi‐degree‐of‐freedom control in structures fabricated through 3D printing employing low‐loss materials. The designs are validated through 3D finite‐difference time‐domain (FDTD) simulations and experimental measurements, showing that, in all cases, the desired diffraction patterns are generated.

Authors:
 ;  ;  
Publication Date:
NSF-PAR ID:
10418900
Journal Name:
Advanced Optical Materials
Volume:
11
Issue:
7
ISSN:
2195-1071
Publisher:
Wiley Blackwell (John Wiley & Sons)
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We demonstrate ultra-thin (1.5-3λ0), fabrication-error tolerant efficient diffractive terahertz (THz) optical elements designed using a computer-aided optimization-based search algorithm. The basic operation of these components is modeled using scalar diffraction of electromagnetic waves through a pixelated multi-level 3D-printed polymer structure. Through the proposed design framework, we demonstrate the design of various ultrathin planar THz optical elements, namely (i) a high Numerical Aperture (N.A.), broadband aberration rectified spherical lens (0.1 THz–0.3 THz), (ii) a spectral splitter (0.3 THz–0.6 THz) and (iii) an on-axis broadband transmissive hologram (0.3 THz–0.5 THz). Such an all-dielectric computational design-based approach is advantageous against metallic or dielectric metasurfaces from the perspective that it incorporates all the inherent structural advantages associated with a scalar diffraction based approach, such as (i) ease of modeling, (ii) substrate-less facile manufacturing, (iii) planar geometry, (iv) high efficiency along with(v)broadband operation, (vi) area scalability and (vii) fabrication error-tolerance. With scalability and error tolerance being two major bottlenecks of previous design strategies. This work is therefore, a significant step towards the design of THz optical elements by bridging the gap between structural and computational design i.e. through a hybrid design-based approach enabling considerably less computational resources than the previous state of the art. Furthermore, the approach used herein canmore »be expanded to a myriad of optical elements at any wavelength regime.

    « less
  2. null (Ed.)
    Synopsis Fish perform many complex manipulation behaviors without hands or flexible muscular tongues, instead relying on more than 20 movable skeletal elements in their highly kinetic skulls. How fish use their skulls to accomplish these behaviors, however, remains unclear. Most previous mechanical models have represented the fish skull using one or more planar four-bar linkages, which have just a single degree of freedom (DoF). In contrast, truncated-cone hydrodynamic models have assumed up to five DoFs. In this study, we introduce and validate a 3D mechanical linkage model of a fish skull that incorporates the pectoral girdle and mandibular and hyoid arches. We validate this model using an in vivo motion dataset of suction feeding in channel catfish and then use this model to quantify the DoFs in the fish skull, to categorize the motion patterns of the cranial linkage during feeding, and to evaluate the association between these patterns and food motion. We find that the channel catfish skull functions as a 17-link, five-loop parallel mechanism. Despite having 19 potential DoFs, we find that seven DoFs are sufficient to describe most of the motion of the cranial linkage, consistent with the fish skull functioning as a multi-DoF, manipulation system. Channelmore »catfish use this linkage to generate three different motion patterns (rostrocaudal wave, caudorostral wave, and compressive wave), each with its own associated food velocity profile. These results suggest that biomechanical manipulation systems must have a minimum number of DoFs to effectively control objects, whether in water or air.« less
  3. Abstract

    3D printing, formally known as additive manufacturing, creates complex geometries via layer‐by‐layer addition of materials. While 3D printing has been historically perceived as the static addition of build layers, 3D printing is now considered as a dynamic assembly process. In this context, here a new 3D printing process is reported that executes full degree‐of‐freedom (DOF) transformation (translating, rotating, and scaling) of each individual building layer while utilizing continuous fabrication techniques. Transforming individual building layers within the sequential layered manufacturing process enables dynamic transformation of the 3D printed parts on‐the‐fly, eliminating the time‐consuming redesign steps. Preserving the locality of the transformation to each layer further enables the discrete conformal transformation, allowing objects such as vascular scaffolds to be optimally fabricated to properly fit within specific patient anatomy obtained from the magnetic resonance imaging (MRI) measurements. Finally, exploiting the freedom to control the orientation of each individual building layer, multimaterials, multiaxis 3D printing capability are further established for integrating functional modules made of dissimilar materials in 3D printed devices. This final capability is demonstrated through 3D printing a soft pneumatic gripper via heterogenous integration of rigid base and soft actuating limbs.

  4. Abstract

    Successful surgical operations are characterized by preplanning routines to be executed during actual surgical operations. To achieve this, surgeons rely on the experience acquired from the use of cadavers, enabling technologies like virtual reality (VR) and clinical years of practice. However, cadavers, having no dynamism and realism as they lack blood, can exhibit limited tissue degradation and shrinkage, while current VR systems do not provide amplified haptic feedback. This can impact surgical training increasing the likelihood of medical errors. This work proposes a novel Mixed Reality Combination System (MRCS) that pairs Augmented Reality (AR) technology and an inertial measurement unit (IMU) sensor with 3D printed, collagen-based specimens that can enhance task performance like planning and execution. To achieve this, the MRCS charts out a path prior to a user task execution based on a visual, physical, and dynamic environment on the state of a target object by utilizing surgeon-created virtual imagery that, when projected onto a 3D printed biospecimen as AR, reacts visually to user input on its actual physical state. This allows a real-time user reaction of the MRCS by displaying new multi-sensory virtual states of an object prior to performing on the actual physical state of thatmore »same object enabling effective task planning. Tracked user actions using an integrated 9-Degree of Freedom IMU demonstrate task execution This demonstrates that a user, with limited knowledge of specific anatomy, can, under guidance, execute a preplanned task. In addition, to surgical planning, this system can be generally applied in areas such as construction, maintenance, and education.

    « less
  5. Abstract

    High-spectral-purity frequency-agile room-temperature sources in the terahertz spectrum are foundational elements for imaging, sensing, metrology, and communications. Here we present a chip-scale optical parametric oscillator based on an integrated nonlinear microresonator that provides broadly tunable single-frequency and multi-frequency oscillators in the terahertz regime. Through optical-to-terahertz down-conversion using a plasmonic nanoantenna array, coherent terahertz radiation spanning 2.8-octaves is achieved from 330 GHz to 2.3 THz, with ≈20 GHz cavity-mode-limited frequency tuning step and ≈10 MHz intracavity-mode continuous frequency tuning range at each step. By controlling the microresonator intracavity power and pump-resonance detuning, tunable multi-frequency terahertz oscillators are also realized. Furthermore, by stabilizing the microresonator pump power and wavelength, sub-100 Hz linewidth of the terahertz radiation with 10−15residual frequency instability is demonstrated. The room-temperature generation of both single-frequency, frequency-agile terahertz radiation and multi-frequency terahertz oscillators in the chip-scale platform offers unique capabilities in metrology, sensing, imaging and communications.