skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Machine Learning Enables Multi‐Degree‐of‐Freedom Reconfigurable Terahertz Holograms with Cascaded Diffractive Optical Elements
Abstract Machine learning can empower the design of cascaded diffractive optical elements (DOEs) at terahertz frequencies enabling the realization of holograms with a tailored multi‐degree‐of‐freedom reconfigurable operation when altering either the number, spacing, rotational alignment, and/or order of the elements. This unprecedented control over the spatial terahertz light distribution can profoundly impact multiple terahertz applications such as signal multiplexing, imaging, and displays. This work demonstrates this multi‐degree‐of‐freedom control in structures fabricated through 3D printing employing low‐loss materials. The designs are validated through 3D finite‐difference time‐domain (FDTD) simulations and experimental measurements, showing that, in all cases, the desired diffraction patterns are generated.  more » « less
Award ID(s):
1936729
PAR ID:
10418900
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Optical Materials
Volume:
11
Issue:
7
ISSN:
2195-1071
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Kyriakopoulos, Kostas J; Polygerinos, Panagiotis (Ed.)
    We demonstrate proprioceptive feedback control of a one degree of freedom soft, pneumatically actuated origami robot and an assembly of two robots into a two degree of freedom system. The base unit of the robot is a 41 mm long, 3-D printed Kresling-inspired structure with six sets of sidewall folds and one degree of freedom. Pneumatic actuation, provided by negative fluidic pressure, causes the robot to contract. Capacitive sensors patterned onto the robot provide position estimation and serve as input to a feedback controller. Using a finite element approach, the electrode shapes are optimized for sensitivity at larger (more obtuse) fold angles to improve control across the actuation range. We demonstrate stable position control through discrete-time proportional-integral-derivative (PID) control on a single unit Kresling robot via a series of static set points to 17 mm, dynamic set point stepping, and sinusoidal signal following, with error under 3 mm up to 10 mm contraction. We also demonstrate a two-unit Kresling robot with two degree of freedom extension and rotation control, which has error of 1.7 mm and 6.1°. This work contributes optimized capacitive electrode design and the demonstration of closed-loop feedback position control without visual tracking as an input. This approach to capacitance sensing and modeling constitutes a major step towards proprioceptive state estimation and feedback control in soft origami robotics. 
    more » « less
  2. null (Ed.)
    In this paper, a novel strategy is designed for trajectory control of a multi-section continuum robot in three-dimensional space to achieve accurate orientation, curvature, and section length tracking. The formulation connects the continuum manipulator dynamic behavior to a virtual discrete-jointed robot whose degrees-of-freedom are directly mapped to those of a continuum robot section. Based on this connection, a computed torque control architecture is developed for the virtual robot, for which inverse kinematics and dynamic equations are constructed and exploited, with appropriate transformations developed for implementation on the continuum robot. The control algorithm is implemented on a six degree-of-freedom two-section OctArm continuum manipulator. Experimental results show that the proposed method managed simultaneous extension/contraction, bending, and torsion actions on multi-section continuum robots with decent tracking performance (steady state arc length and curvature tracking error of merely 3.3mm and 0.13m-1, respectively). These results demonstrate that the proposed method can be applied to multi-section continuum manipulator and perform complex maneuvers within a nonlinear setting. 
    more » « less
  3. Complex robotic systems require whole-body controllers to handle contact interactions, handle closed kinematic chains, and track task-space control objectives. However, for many applications, safety-critical controllers are essential to steer away from undesired robot configurations and prevent unsafe behaviors. A prime example is legged robotics, where we can have tasks such as balance control, regulation of torso orientation, and, most importantly, walking. As the coordination of multi-body systems is non-trivial, following a combination of those tasks might lead to configurations that are deemed dangerous, such as stepping on its support foot during walking, leaning the torso excessively, or producing excessive centroidal momentum, resulting in non-human-like walking. To address these challenges, we propose a formulation of an inverse dynamics control enhanced with control barrier functions that allow general higher-order relative degree safe sets for robotic systems with numerous degrees of freedom. Our approach utilizes a quadratic program that respects closed kinematic chains, minimizes the control objectives, and imposes desired constraints on the Zero Moment Point, friction cone, and torque. More importantly, it also ensures the forward invariance of a general user-defined high Relative-Degree safety set. We demonstrate the effectiveness of our method by applying it to the 3D biped robot Digit, both in simulation and with hardware experiments. 
    more » « less
  4. Abstract The Multi-terrain Amphibious ARCtic explOrer (MAARCO) rover is an amphibious arctic rover designed to traverse arctic terrains and propel through water. The MAARCO rover consists of an ellipsoid chassis with links connecting to the propulsion system. The propulsion system consists of two helical drives made up of hollow cylinder ballasts wrapped in auger or screw shaped blades in opposing helical directions parallel to each other. In this paper, a 6 degree of freedom dynamic model of the MAARCO rover is created using Kane’s method dynamic modeling to demonstrate the dynamic model capabilities for an underwater vehicle’s performance. The hydrodynamic forces considered on the underwater rover include drag, buoyancy, flow acceleration, and added mass. In addition to the hydrodynamic forces the rover will experience gravity forces, control forces, net thrust from the helical drive blades, and net buoyancy from the helical drive ballast system. The equations of motion are developed from Kane’s method to reduce computational cost and simulated in MATLAB for different cases to gain further understanding and provide a visual representation of the system underwater and the dynamic models capabilities. The results of the simulations show the MAARCO rover behavior in the hydrodynamic environment. The results reveal that the Kane’s method dynamic modeling successfully develops equations of motion of a complicated system that can be implemented into a control system. 
    more » « less
  5. Abstract We present a simple and concise discretization of the covariant derivative vector Dirichlet energy for triangle meshes in 3D using Crouzeix‐Raviart finite elements. The discretization is based on linear discontinuous Galerkin elements, and is simple to implement, without compromising on quality: there are two degrees of freedom for each mesh edge, and the sparse Dirichlet energy matrix can be constructed in a single pass over all triangles using a short formula that only depends on the edge lengths, reminiscent of the scalar cotangent Laplacian. Our vector Dirichlet energy discretization can be used in a variety of applications, such as the calculation of Killing fields, parallel transport of vectors, and smooth vector field design. Experiments suggest convergence and suitability for applications similar to other discretizations of the vector Dirichlet energy. 
    more » « less