skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A classification model for continuous responses: Identifying risk perception groups on health‐related activities
Abstract In the current literature on latent variable models, much effort has been put on the development of dichotomous and polytomous cognitive diagnostic models (CDMs) for assessments. Recently, the possibility of using continuous responses in CDMs has been brought to discussion. But no Bayesian approach has been developed yet for the analysis of CDMs when responses are continuous. Our work is the first Bayesian framework for the continuous deterministic inputs, noisy, and gate (DINA) model. We also propose new interpretations for item parameters in this DINA model, which makes the analysis more interpretable than before. In addition, we have conducted several simulations to evaluate the performance of the continuous DINA model through our Bayesian approach. Then, we have applied the proposed DINA model to a real data example of risk perceptions for individuals over a range of health‐related activities. The application results exemplify the high potential of the use of the proposed continuous DINA model to classify individuals in the study.  more » « less
Award ID(s):
1848451
PAR ID:
10418903
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Biometrical Journal
Volume:
65
Issue:
4
ISSN:
0323-3847
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Extracting an individual’s knowledge structure is a challenging task as it requires formalization of many concepts and their interrelationships. While there has been significant research on how to represent knowledge to support computational design tasks, there is limited understanding of the knowledge structures of human designers. This understanding is necessary for comprehension of cognitive tasks such as decision making and reasoning, and for improving educational programs. In this paper, we focus on quantifying theory-based causal knowledge, which is a specific type of knowledge held by human designers. We develop a probabilistic graph-based model for representing individuals’ concept-specific causal knowledge for a given theory. We propose a methodology based on probabilistic directed acyclic graphs (DAGs) that uses logistic likelihood function for calculating the probability of a correct response. The approach involves a set of questions for gathering responses from 205 engineering students, and a hierarchical Bayesian approach for inferring individuals’ DAGs from the observed responses. We compare the proposed model to a baseline three-parameter logistic (3PL) model from the item response theory. The results suggest that the graph-based logistic model can estimate individual students’ knowledge graphs. Comparisons with the 3PL model indicate that knowledge assessment is more accurate when quantifying knowledge at the level of causal relations than quantifying it using a scalar ability parameter. The proposed model allows identification of parts of the curriculum that a student struggles with and parts they have already mastered which is essential for remediation. 
    more » « less
  2. Recent studies show increasing interest in using process data (e.g., response time, response actions) to enhance measurement accuracy for respondents’ latent traits. Yet, few have explored the possibility of incorporating process information into cognitive diagnostic models (CDMs). This study proposes a novel CDM approach that utilizes a four-component joint modeling approach with response action sequences (i.e., similarity and efficiency), response time, and item responses. We employed the Markov Chain Monte Carlo method for parameter estimation and evaluated the performance of the proposed model using both an empirical study and two simulation studies. The results suggest that the process data can improve respondents’ classification accuracy under varied conditions and support the interpretation of the association between process and response data. 
    more » « less
  3. Abstract Extracting an individual's scientific knowledge is essential for improving educational assessment and understanding cognitive tasks in engineering activities such as reasoning and decision making. However, knowledge extraction is an almost impossible endeavor if the domain of knowledge and the available observational data are unrestricted. The objective of this paper is to quantify individuals' theory-based causal knowledge from their responses to given questions. Our approach uses directed acyclic graphs (DAGs) to represent causal knowledge for a given theory and a graph-based logistic model that maps individuals' question-specific subgraphs to question responses. We follow a hierarchical Bayesian approach to estimate individuals' DAGs from observations.The method is illustrated using 205 engineering students' responses to questions on fatigue analysis in mechanical parts. In our results, we demonstrate how the developed methodology provides estimates of population-level DAG and DAGs for individual students. This dual representation is essential for remediation since it allows us to identify parts of a theory that a population or individual struggles with and parts they have already mastered. An addendum of the method is that it enables predictions about individuals' responses to new questions based on the inferred individual-specific DAGs. The latter has implications for the descriptive modeling of human problem-solving, a critical ingredient in sociotechnical systems modeling. 
    more » « less
  4. Attribute hierarchy, the underlying prerequisite relationship among attributes, plays an important role in applying cognitive diagnosis models (CDM) for designing efficient cognitive diagnostic assessments. However, there are limited statistical tools to directly estimate attribute hierarchy from response data. In this study, we proposed a Bayesian formulation for attribute hierarchy within CDM framework and developed an efficient Metropolis within Gibbs algorithm to estimate the underlying hierarchy along with the specified CDM parameters. Our proposed estimation method is flexible and can be adapted to a general class of CDMs. We demonstrated our proposed method via a simulation study, and the results from which show that the proposed method can fully recover or estimate at least a subgraph of the underlying structure across various conditions under a specified CDM model. The real data application indicates the potential of learning attribute structure from data using our algorithm and validating the existing attribute hierarchy specified by content experts. 
    more » « less
  5. Extracting an individual’s knowledge structure is a challenging task as it requires formalization of many concepts and their interrelationships. While there has been significant research on how to represent knowledge to support computational design tasks, there is limited understanding of the knowledge structures of human designers. This understanding is necessary for comprehension of cognitive tasks such as decision making and reasoning, and for improving educational programs. In this paper, we focus on quantifying theory-based causal knowledge, which is a specific type of knowledge held by human designers. We develop a probabilistic graph-based model for representing individuals’ concept-specific causal knowledge for a given theory. We propose a methodology based on probabilistic directed acyclic graphs (DAGs) that uses logistic likelihood function for calculating the probability of a correct response. The approach involves a set of questions for gathering responses from 205 engineering students, and a hierarchical Bayesian approach for inferring individuals’ DAGs from the observed responses. We compare the proposed model to a baseline three-parameter logistic (3PL) model from the item response theory. The results suggest that the graph-based logistic model can estimate individual students’ knowledge graphs. Comparisons with the 3PL model indicate that knowledge assessment is more accurate when quantifying knowledge at the level of causal relations than quantifying it using a scalar ability parameter. The proposed model allows identification of parts of the curriculum that a student struggles with and parts they have already mastered which is essential for remediation. 
    more » « less