skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The DOI auto-population feature in the Public Access Repository (PAR) will be unavailable from 4:00 PM ET on Tuesday, July 8 until 4:00 PM ET on Wednesday, July 9 due to scheduled maintenance. We apologize for the inconvenience caused.


Title: A Bayesian Hierarchical Model for Extracting Individuals' Theory-based Causal Knowledge
Abstract Extracting an individual's scientific knowledge is essential for improving educational assessment and understanding cognitive tasks in engineering activities such as reasoning and decision making. However, knowledge extraction is an almost impossible endeavor if the domain of knowledge and the available observational data are unrestricted. The objective of this paper is to quantify individuals' theory-based causal knowledge from their responses to given questions. Our approach uses directed acyclic graphs (DAGs) to represent causal knowledge for a given theory and a graph-based logistic model that maps individuals' question-specific subgraphs to question responses. We follow a hierarchical Bayesian approach to estimate individuals' DAGs from observations.The method is illustrated using 205 engineering students' responses to questions on fatigue analysis in mechanical parts. In our results, we demonstrate how the developed methodology provides estimates of population-level DAG and DAGs for individual students. This dual representation is essential for remediation since it allows us to identify parts of a theory that a population or individual struggles with and parts they have already mastered. An addendum of the method is that it enables predictions about individuals' responses to new questions based on the inferred individual-specific DAGs. The latter has implications for the descriptive modeling of human problem-solving, a critical ingredient in sociotechnical systems modeling.  more » « less
Award ID(s):
1662230 1728165
PAR ID:
10382271
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Computing and Information Science in Engineering
ISSN:
1530-9827
Page Range / eLocation ID:
1 to 21
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Extracting an individual’s knowledge structure is a challenging task as it requires formalization of many concepts and their interrelationships. While there has been significant research on how to represent knowledge to support computational design tasks, there is limited understanding of the knowledge structures of human designers. This understanding is necessary for comprehension of cognitive tasks such as decision making and reasoning, and for improving educational programs. In this paper, we focus on quantifying theory-based causal knowledge, which is a specific type of knowledge held by human designers. We develop a probabilistic graph-based model for representing individuals’ concept-specific causal knowledge for a given theory. We propose a methodology based on probabilistic directed acyclic graphs (DAGs) that uses logistic likelihood function for calculating the probability of a correct response. The approach involves a set of questions for gathering responses from 205 engineering students, and a hierarchical Bayesian approach for inferring individuals’ DAGs from the observed responses. We compare the proposed model to a baseline three-parameter logistic (3PL) model from the item response theory. The results suggest that the graph-based logistic model can estimate individual students’ knowledge graphs. Comparisons with the 3PL model indicate that knowledge assessment is more accurate when quantifying knowledge at the level of causal relations than quantifying it using a scalar ability parameter. The proposed model allows identification of parts of the curriculum that a student struggles with and parts they have already mastered which is essential for remediation. 
    more » « less
  2. null (Ed.)
    Abstract Extracting an individual’s knowledge structure is a challenging task as it requires formalization of many concepts and their interrelationships. While there has been significant research on how to represent knowledge to support computational design tasks, there is limited understanding of the knowledge structures of human designers. This understanding is necessary for comprehension of cognitive tasks such as decision making and reasoning, and for improving educational programs. In this paper, we focus on quantifying theory-based causal knowledge, which is a specific type of knowledge held by human designers. We develop a probabilistic graph-based model for representing individuals’ concept-specific causal knowledge for a given theory. We propose a methodology based on probabilistic directed acyclic graphs (DAGs) that uses logistic likelihood function for calculating the probability of a correct response. The approach involves a set of questions for gathering responses from 205 engineering students, and a hierarchical Bayesian approach for inferring individuals’ DAGs from the observed responses. We compare the proposed model to a baseline three-parameter logistic (3PL) model from the item response theory. The results suggest that the graph-based logistic model can estimate individual students’ knowledge graphs. Comparisons with the 3PL model indicate that knowledge assessment is more accurate when quantifying knowledge at the level of causal relations than quantifying it using a scalar ability parameter. The proposed model allows identification of parts of the curriculum that a student struggles with and parts they have already mastered which is essential for remediation. 
    more » « less
  3. State-of-the-art approaches to causal discovery usually assume a fixed underlying causal model. However, it is often the case that causal models vary across domains or subjects, due to possibly omitted factors that affect the quantitative causal effects. As a typical example, causal connectivity in the brain network has been reported to vary across individuals, with significant differences across groups of people, such as autistics and typical controls. In this paper, we develop a unified framework for causal discovery and mechanism-based group identification. In particular, we propose a specific and shared causal model (SSCM), which takes into account the variabilities of causal relations across individuals/groups and leverages their commonalities to achieve statistically reliable estimation. The learned SSCM gives the specific causal knowledge for each individual as well as the general trend over the population. In addition, the estimated model directly provides the group information of each individual. Experimental results on synthetic and real-world data demonstrate the efficacy of the proposed method. 
    more » « less
  4. In this paper, we propose Learn, a unified, easy-to-use tool to apply question generation and selection in classrooms. The tool lets instructors and TAs create assignments that can write and re-write themselves. Given existing course materials, for example a reference textbook, Learn can generate questions, select the highest quality questions, show the questions to students, adapt question difficulty to student knowledge, and generate new questions based on how effectively old questions help students learn. The modular, composable nature of the tools for handling each sub-task allow instructors to use only the parts of the tool necessary to the course, allowing for integration in a large number of courses with varied teaching styles. We also report on the adoption of the tool in classes at the University of Pennsylvania with over 1000 students. Learn is publicly released at https://learn.withmartian.com. 
    more » « less
  5. Identification theory for causal effects in causal models associated with hidden variable directed acyclic graphs (DAGs) is well studied. However, the corresponding algorithms are underused due to the complexity of estimating the identifying functionals they output. In this work, we bridge the gap between identification and estimation of population-level causal effects involving a single treatment and a single outcome. We derive influence function based estimators that exhibit double robustness for the identified effects in a large class of hidden variable DAGs where the treatment satisfies a simple graphical criterion; this class includes models yielding the adjustment and front-door functionals as special cases. We also provide necessary and sufficient conditions under which the statistical model of a hidden variable DAG is nonparametrically saturated and implies no equality constraints on the observed data distribution. Further, we derive an important class of hidden variable DAGs that imply observed data distributions observationally equivalent (up to equality constraints) to fully observed DAGs. In these classes of DAGs, we derive estimators that achieve the semiparametric efficiency bounds for the target of interest where the treatment satisfies our graphical criterion. Finally, we provide a sound and complete identification algorithm that directly yields a weight based estimation strategy for any identifiable effect in hidden variable causal models. 
    more » « less