skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Exploring the mismatch between the theory and application of photosynthetic quotients in aquatic ecosystems
Abstract Estimates of primary productivity in aquatic ecosystems are commonly based on variation in , rather than . The photosynthetic quotient (PQ) is used to convert primary production estimates from units of to C. However, there is a mismatch between the theory and application of the PQ. Aquatic ecologists use PQ = 1–1.4. Meanwhile, PQ estimates from the literature support PQ = 0.1–4.2. Here, we describe the theory on why PQ may vary in aquatic ecosystems. We synthesize the current understanding of how processes such as assimilation and photorespiration can affect the PQ. We test these ideas with a case study of the Clark Fork River, Montana, where theory predicts that PQ could vary in space and time due to variation in environmental conditions. Finally, we highlight research needs to improve our understanding of the PQ. We suggest departing from fixed PQ values and instead use literature‐based sensitivity analyses to infer C dynamics from primary production estimated using .  more » « less
Award ID(s):
1655197 1757351 1655198
PAR ID:
10418907
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Limnology and Oceanography Letters
Volume:
8
Issue:
4
ISSN:
2378-2242
Page Range / eLocation ID:
p. 565-579
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The limits on primary production vary in complex ways across space and time. Strong tests of clear conceptual models have been instrumental in understanding these patterns in both terrestrial and aquatic ecosystems. Here we present the first experimental test of a new model describing how shifts from nutrient to light limitation control primary productivity in lake ecosystems as hydrological inputs of nutrients and organic matter vary. We found support for two key predictions of the model: that gross primary production (GPP) follows a hump‐shaped relationship with increasing dissolved organic carbon (DOC) concentrations; and that the maximum GPP, and the critical DOC concentration at which the hump occurs, are determined by the stoichiometry and chromophoricity of the hydrological inputs. Our results advance fundamental understanding of the limits on aquatic primary production, and have important applications given ongoing anthropogenic alterations of the nutrient and organic matter inputs to surface waters. 
    more » « less
  2. Abstract Arctic‐boreal landscapes are experiencing profound warming, along with changes in ecosystem moisture status and disturbance from fire. This region is of global importance in terms of carbon feedbacks to climate, yet the sign (sink or source) and magnitude of the Arctic‐boreal carbon budget within recent years remains highly uncertain. Here, we provide new estimates of recent (2003–2015) vegetation gross primary productivity (GPP), ecosystem respiration (Reco), net ecosystem CO2exchange (NEE;Reco − GPP), and terrestrial methane (CH4) emissions for the Arctic‐boreal zone using a satellite data‐driven process‐model for northern ecosystems (TCFM‐Arctic), calibrated and evaluated using measurements from >60 tower eddy covariance (EC) sites. We used TCFM‐Arctic to obtain daily 1‐km2flux estimates and annual carbon budgets for the pan‐Arctic‐boreal region. Across the domain, the model indicated an overall average NEE sink of −850 Tg CO2‐C year−1. Eurasian boreal zones, especially those in Siberia, contributed to a majority of the net sink. In contrast, the tundra biome was relatively carbon neutral (ranging from small sink to source). Regional CH4emissions from tundra and boreal wetlands (not accounting for aquatic CH4) were estimated at 35 Tg CH4‐C year−1. Accounting for additional emissions from open water aquatic bodies and from fire, using available estimates from the literature, reduced the total regional NEE sink by 21% and shifted many far northern tundra landscapes, and some boreal forests, to a net carbon source. This assessment, based on in situ observations and models, improves our understanding of the high‐latitude carbon status and also indicates a continued need for integrated site‐to‐regional assessments to monitor the vulnerability of these ecosystems to climate change. 
    more » « less
  3. Abstract Savanna ecosystems contribute ~30% of global net primary production (NPP), but they vary substantially in composition and function, specifically in the understory, which can result in complex responses to environmental fluctuations. We tested how understory phenology and its contribution to ecosystem productivity within a longleaf pine ecosystem varied at two ends of a soil moisture gradient (mesic and xeric). We used the Normalized Difference Vegetation Index (NDVI) of the understory and ecosystem productivity estimates from eddy covariance systems to understand how variation in the understory affected overall ecosystem recovery from disturbances (drought and fire). We found that the mesic site recovered more rapidly from the disturbance of fire, compared to the xeric site, indicated by a faster increase inNDVI. During drought, understoryNDVIat the xeric site decreased less compared to the mesic site, suggesting adaptation to lower soil moisture conditions. Our results also show large variation within savanna ecosystems in the contribution of the understory to ecosystem productivity and recovery, highlighting the critical need to further subcategorize global savanna ecosystems by their structural features, to accurately predict their contribution to global estimates ofNPP. 
    more » « less
  4. Abstract Understanding controls on primary productivity is essential for describing ecosystems and their responses to environmental change. In lakes, pelagic gross primary productivity (GPP) is strongly controlled by inputs of nutrients and dissolved organic matter. Although past studies have developed process models of this nutrient‐color paradigm (NCP), broad empirical tests of these models are scarce. We used data from 58 globally distributed, mostly temperate lakes to test such a model and improve understanding and prediction of the controls on lake primary production. The model includes three state variables–dissolved phosphorus, terrestrial dissolved organic carbon (DOC), and phytoplankton biomass–and generates realistic predictions for equilibrium rates of pelagic GPP. We calibrated our model using a Bayesian data assimilation technique on a subset of lakes where DOC and total phosphorus (TP) loads were known. We then asked how well the calibrated model performed with a larger set of lakes. Revised parameter estimates from the updated model aligned well with existing literature values. Observed GPP varied nonlinearly with both inflow DOC and TP concentrations in a manner consistent with increasing light limitation as DOC inputs increased and decreasing nutrient limitation as TP inputs increased. Furthermore, across these diverse lake ecosystems, model predictions of GPP were highly correlated with observed values derived from high‐frequency sensor data. The GPP predictions using the updated parameters improved upon previous estimates, expanding the utility of a process model with simplified assumptions for water column mixing. Our analysis provides a model structure that may be broadly useful for understanding current and future patterns in lake primary production. 
    more » « less
  5. Abstract Food loss and waste (FLW) is a major challenge to food system sustainability, including aquatic foods. We investigated aquatic FLW in the food supply of the United States, the largest importer of aquatic food globally, using primary and secondary data and life cycle methodology. We show that there are significant differences in FLW among species, production technology, origin and stage of supply chain. We estimate total aquatic FLW was 22.7%, which is 43–55% lower than earlier estimates reported in the literature, illustrating the importance of applying a disaggregated approach. Production losses associated with imported food contribute over a quarter of total FLW, and addressing these losses requires multinational efforts to implement interventions along the supply chain. These findings inform prioritization of solutions—including areas of need for innovations, government incentives, policy change, infrastructure and equity. 
    more » « less