skip to main content


Title: Exploring the mismatch between the theory and application of photosynthetic quotients in aquatic ecosystems
Abstract

Estimates of primary productivity in aquatic ecosystems are commonly based on variation in , rather than . The photosynthetic quotient (PQ) is used to convert primary production estimates from units of to C. However, there is a mismatch between the theory and application of the PQ. Aquatic ecologists use PQ = 1–1.4. Meanwhile, PQ estimates from the literature support PQ = 0.1–4.2. Here, we describe the theory on why PQ may vary in aquatic ecosystems. We synthesize the current understanding of how processes such as assimilation and photorespiration can affect the PQ. We test these ideas with a case study of the Clark Fork River, Montana, where theory predicts that PQ could vary in space and time due to variation in environmental conditions. Finally, we highlight research needs to improve our understanding of the PQ. We suggest departing from fixed PQ values and instead use literature‐based sensitivity analyses to infer C dynamics from primary production estimated using .

 
more » « less
Award ID(s):
1655197 1757351 1655198
NSF-PAR ID:
10418907
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Limnology and Oceanography Letters
Volume:
8
Issue:
4
ISSN:
2378-2242
Page Range / eLocation ID:
p. 565-579
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Arctic‐boreal landscapes are experiencing profound warming, along with changes in ecosystem moisture status and disturbance from fire. This region is of global importance in terms of carbon feedbacks to climate, yet the sign (sink or source) and magnitude of the Arctic‐boreal carbon budget within recent years remains highly uncertain. Here, we provide new estimates of recent (2003–2015) vegetation gross primary productivity (GPP), ecosystem respiration (Reco), net ecosystem CO2exchange (NEE;Reco − GPP), and terrestrial methane (CH4) emissions for the Arctic‐boreal zone using a satellite data‐driven process‐model for northern ecosystems (TCFM‐Arctic), calibrated and evaluated using measurements from >60 tower eddy covariance (EC) sites. We used TCFM‐Arctic to obtain daily 1‐km2flux estimates and annual carbon budgets for the pan‐Arctic‐boreal region. Across the domain, the model indicated an overall average NEE sink of −850 Tg CO2‐C year−1. Eurasian boreal zones, especially those in Siberia, contributed to a majority of the net sink. In contrast, the tundra biome was relatively carbon neutral (ranging from small sink to source). Regional CH4emissions from tundra and boreal wetlands (not accounting for aquatic CH4) were estimated at 35 Tg CH4‐C year−1. Accounting for additional emissions from open water aquatic bodies and from fire, using available estimates from the literature, reduced the total regional NEE sink by 21% and shifted many far northern tundra landscapes, and some boreal forests, to a net carbon source. This assessment, based on in situ observations and models, improves our understanding of the high‐latitude carbon status and also indicates a continued need for integrated site‐to‐regional assessments to monitor the vulnerability of these ecosystems to climate change.

     
    more » « less
  2. Abstract

    The limits on primary production vary in complex ways across space and time. Strong tests of clear conceptual models have been instrumental in understanding these patterns in both terrestrial and aquatic ecosystems. Here we present the first experimental test of a new model describing how shifts from nutrient to light limitation control primary productivity in lake ecosystems as hydrological inputs of nutrients and organic matter vary. We found support for two key predictions of the model: that gross primary production (GPP) follows a hump‐shaped relationship with increasing dissolved organic carbon (DOC) concentrations; and that the maximum GPP, and the critical DOC concentration at which the hump occurs, are determined by the stoichiometry and chromophoricity of the hydrological inputs. Our results advance fundamental understanding of the limits on aquatic primary production, and have important applications given ongoing anthropogenic alterations of the nutrient and organic matter inputs to surface waters.

     
    more » « less
  3. Abstract

    Compound‐specific stable isotope analysis of individual amino acids (CSIA‐AA) has emerged as a transformative approach to estimate consumer trophic positions (TPCSIA) that are internally indexed to primary producer nitrogen isotope baselines. Central to accurate TPCSIAestimation is an understanding of beta (β) values—the differences between trophic and source AA δ15N values in the primary producers at the base of a consumers’ food web. Growing evidence suggests higher taxonomic and tissue‐specificβvalue variability than typically appreciated.

    This meta‐analysis fulfils a pressing need to comprehensively evaluate relevant sources ofβvalue variability and its contribution to TPCSIAuncertainty. We first synthesized all published primary producer AA δ15N data to investigate ecologically relevant sources of variability (e.g. taxonomy, tissue type, habitat type, mode of photosynthesis). We then reviewed the biogeochemical mechanisms underpinning AA δ15N andβvalue variability. Lastly, we evaluated the sensitivity of TPCSIAestimates to uncertainty in meanβGlx‐Phevalues and Glx‐Phe trophic discrimination factors (TDFGlx‐Phe).

    We show that variation inβGlx‐Phevalues is two times greater than previously considered, with degree of vascularization, not habitat type (terrestrial vs. aquatic), providing the greatest source of variability (vascular autotroph = −6.6 ± 3.4‰; non‐vascular autotroph = +3.3 ± 1.8‰). Within vascular plants, tissue type secondarily contributed toβGlx‐Phevalue variability, but we found no clear distinction among C3, C4and CAM plantβGlx‐Phevalues. Notably, we found that vascular plantβGlx‐Lysvalues (+2.5 ± 1.6‰) are considerably less variable thanβGlx‐Phevalues, making Lys a useful AA tracer of primary production sources in terrestrial systems. Our multi‐trophic level sensitivity analyses demonstrate that TPCSIAestimates are highly sensitive to changes in bothβGlx‐Pheand TDFGlx‐Phevalues but that the relative influence ofβvalues dissipates at higher trophic levels.

    Our results highlight that primary producerβvalues are integral to accurate trophic position estimation. We outline four key recommendations for identifying, constraining and accounting forβvalue variability to improve TPCSIAestimation accuracy and precision moving forward. We must ultimately expand libraries of primary producer AA δ15N values to better understand the mechanistic drivers ofβvalue variation.

     
    more » « less
  4. Abstract

    Lateral carbon transport (LCT), the flux of terrestrial C transported to aquatic ecosystems, displaces carbon (C) across the terrestrial‐aquatic continuum and is on the same order of magnitude as terrestrial net ecosystem production. However, few continental scale C models include LCT or the C‐hydrology linkages necessary for modeling LCT. Those that do exist, borrow processes and conceptual understanding from watershed scale models, assuming that large‐scale and small‐scale drivers of LCT are the same. We develop a conceptual framework of LCT, which focuses on lateral dissolved organic carbon (DOC) transport (LCT‐DOC), and operationalize it with a coupled terrestrial‐aquatic C and hydrology model. After comparing our model LCT‐DOC to previous estimates derived from a summation of landscape scale fluxes for the Contiguous U.S., we use model experiments to partition the importance of LCT‐DOC drivers including total annual precipitation, air temperature, and plant traits, which interact across regional and local scales. We find that climate is the strongest driver of LCT‐DOC, where LCT‐DOC is positively related to precipitation but inversely related to temperature at continental scales. However, the net effect of climate on LCT‐DOC is the product of cross‐scale interactions between climate and vegetation. Plant traits also interact strongly with climate and have a measurable influence on LCT‐DOC, with water use efficiency as the most influential plant trait because it couples terrestrial water and C cycling. We demonstrate that our conceptual framework and relatively simple linked C‐hydrology process model of LCT‐DOC can inform hypotheses and predict LCT‐DOC.

     
    more » « less
  5. Abstract

    Empirical evidence and theory suggest that climate warming and an increase in the frequency and duration of drying events will alter the metabolic balance of freshwater ecosystems. However, the impacts of climate change on ecosystem metabolism may depend on whether energy inputs are of autochthonous or allochthonous origin. To date, few studies have examined how warming and drying may interact to alter stream metabolism, much less how their impacts may depend on the energy‐base of the food web.

    To address this research gap, we conducted a multi‐factorial experiment using outdoor mesocosms to investigate the individual and synergistic effects of warming and drought on metabolic processes in stream mesocosms with green (algal‐based) vs. mixed (algal‐ and detritus‐based) vs. brown (detritus‐based) energy pathways.

    We set up 48 mesocosms with one of three different levels of shade and leaf litter input combinations to create mesocosms with different primary energy channels. In addition, we warmed half of the mesocosms by ~2–3°C. We assessed changes in ecosystem respiration (ER), gross primary production (GPP), net ecosystem production (NEP) and organic matter biomass in warmed and ambient temperature mesocosms before a 24 day drying event and after rewetting.

    Surprisingly, experimental warming had little effect on metabolic processes. Drying, however, led to decreased rates of ER and GPP and led to an overall reduction in NEP. Although the effects of drying were similar across energy channel treatments, reductions in ER and GPP were primarily driven by decreases in biomass of benthic and filamentous algae.

    Overall, we demonstrate that drying led to lower rates of NEP in mesocosms regardless of energy inputs. While warming showed little effect in our study, our results suggest that an increase in the frequency of stream drying events could greatly alter the metabolic balance of many aquatic ecosystems.

    Read the freePlain Language Summaryfor this article on the Journal blog.

     
    more » « less