skip to main content


Title: One‐Pot Synthesis of Depolymerizable δ ‐Lactone Based Vitrimers
Abstract

A depolymerizable vitrimer that allows both reprocessability and monomer recovery by a simple and scalable one‐pot two‐step synthesis of vitrimers from cyclic lactones is reported. Biobasedδ‐valerolactone with alkyl substituents (δ‐lactone) has low ceiling temperature; thus, their ring‐opening‐polymerized aliphatic polyesters are capable of depolymerizing back to monomers. In this work, the amorphous poly(δ‐lactone) is solidified into an elastomer (i.e.,δ‐lactone vitrimer) by a vinyl ether cross‐linker with dynamic acetal linkages, giving the merits of reprocessing and healing. Thermolysis of the bulkδ‐lactone vitrimer at 200 °C can recover 85–90 wt% of the material, allowing reuse without losing value and achieving a successful closed‐loop life cycle. It further demonstrates that the new vitrimer has excellent properties, with the potential to serve as a biobased and sustainable replacement of conventional soft elastomers for various applications such as lenses, mold materials, soft robots, and microfluidic devices.

 
more » « less
NSF-PAR ID:
10419005
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
35
Issue:
29
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Kluyveromyces marxianusis a promising nonconventional yeast for biobased chemical production due to its rapid growth rate, high TCA cycle flux, and tolerance to low pH and high temperature. UnlikeSaccharomyces cerevisiae, K. marxianusgrows on low‐cost substrates to cell densities that equal or surpass densities in glucose, which can be beneficial for utilization of lignocellulosic biomass (xylose), biofuel production waste (glycerol), and whey (lactose). We have evaluatedK. marxianusfor the synthesis of polyketides, using triacetic acid lactone (TAL) as the product. The 2‐pyrone synthase (2‐PS) was expressed on a CEN/ARS plasmid in three different strains, and the effects of temperature, carbon source, and cultivation strategy on TAL levels were determined. The highest titer was obtained in defined 1% xylose medium at 37°C, with substantial titers at 41 and 43°C. The introduction of a high‐stability 2‐PS mutant and a promoter substitution increased titer four‐fold. 2‐PS expression from a multi‐copy pKD1‐based plasmid improved TAL titers a further five‐fold. Combining the best plasmid, promoter, and strain resulted in a TAL titer of 1.24 g/L and a yield of 0.0295 mol TAL/mol carbon for this otherwise unengineered strain in 3 ml tube culture. This is an excellent titer and yield (on xylose) before metabolic engineering or fed‐batch culture relative to other hosts (on glucose), and demonstrates the promise of this rapidly growing and thermotolerant yeast species for polyketide production.

     
    more » « less
  2. Abstract

    Yarrowia lipolyticais an oleaginous yeast that is recognized for its ability to accumulate high levels of lipids, which can serve as precursors to biobased fuels and chemicals. Polyketides, such as triacetic acid lactone (TAL), can also serve as a precursor for diverse commodity chemicals. This study usedY. lipolyticaas a host organism for the production of TAL via expression of the 2‐pyrone synthase gene fromGerbera hybrida. Induction of lipid biosynthesis by nitrogen‐limited growth conditions increased TAL titers. We also manipulated basal levels of TAL production using a DNA cut‐and‐paste transposon to mobilize and integrate multiple copies of the 2‐pyrone synthase gene. Strain modifications and batch fermentation in nitrogen‐limited medium yielded TAL titers of 2.6 g/L. Furthermore, we show that minimal medium allows TAL to be readily concentrated at >94% purity and converted at 96% yield to pogostone, a valuable antibiotic. Modifications of this reaction scheme yielded diverse related compounds. Thus, oleaginous organisms have the potential to be flexible microbial biofactories capable of economical synthesis of platform chemicals and the generation of industrially relevant molecules.

     
    more » « less
  3. Abstract

    Bacterial panicle blight is caused byBurkholderia glumaeand results in damage to rice crops worldwide. Virulence ofB. glumaerequires quorum sensing (QS)‐dependent synthesis and export of toxoflavin, responsible for much of the damage to rice. The DedA family is a conserved membrane protein family found in all bacterial species.B. glumaepossesses a member of the DedA family, named DbcA, which we previously showed is required for toxoflavin secretion and virulence in a rice model of infection.B. glumaesecretes oxalic acid as a “common good” in a QS‐dependent manner to combat toxic alkalinization of the growth medium during the stationary phase. Here, we show thatB. glumaeΔdbcAfails to secrete oxalic acid, leading to alkaline toxicity and sensitivity to divalent cations, suggesting a role for DbcA in oxalic acid secretion.B. glumaeΔdbcAaccumulated less acyl‐homoserine lactone (AHL) QS signalling molecules as the bacteria entered the stationary phase, probably due to nonenzymatic inactivation of AHL at alkaline pH. Transcription of toxoflavin and oxalic acid operons was down‐regulated in ΔdbcA. Alteration of the proton motive force with sodium bicarbonate also reduced oxalic acid secretion and expression of QS‐dependent genes. Overall, the data show that DbcA is required for oxalic acid secretion in a proton motive force‐dependent manner, which is critical for QS ofB. glumae. Moreover, this study supports the idea that sodium bicarbonate may serve as a chemical for treatment of bacterial panicle blight.

     
    more » « less
  4. Abstract

    Biobased poly(γ-methyl-α-methylene-γ-butyrolactone) (PMMBL), an acrylic polymer bearing a cyclic lactone ring, has attracted increasing interest because it not only is biorenewable but also exhibits superior properties to petroleum-based linear analog poly(methyl methacrylate) (PMMA). However, such property enhancement has been limited to resistance to heat and solvent, and mechanically both types of polymers are equally brittle. Here we report the expeditious synthesis of well-defined PMMBL-based ABA tri-block copolymers (tri-BCPs)—enabled by dual-initiating and living frustrated Lewis pairs (FLPs)—which are thermoplastic elastomers showing much superior mechanical properties, especially at high working temperatures (80–130 °C), to those of PMMA-based tri-BCPs. The FLPs consist of a bulky organoaluminum Lewis acid and a series of newly designed bis(imino)phosphine superbases bridged by an alkyl linker, which promote living polymerization of MMBL. Uniquely, such bisphosphine superbases initiate the chain growth from both P-sites concurrently, enabling the accelerated synthesis of tri-BCPs in a one-pot, two-step procedure. The results from mechanistic studies, including the single crystal structure of the dually initiated active species, detailed polymerizations, and kinetic studies confirm the livingness of the polymerization and support the proposed polymerization mechanism featuring the dual initiation and subsequent chain growth from both P-sites of the superbase di-initiator.

     
    more » « less
  5. Abstract

    Biosynthesis of the gibberellin (GA) plant hormones evolved independently in plants and microbes, but the pathways proceed by similar transformations. The combined demethylation and γ‐lactone ring forming transformation is of significant mechanistic interest, yet remains unclear. The relevant CYP112 from bacteria was probed by activity assays and18O2‐labeling experiments. Notably, the ability oftert‐butyl hydroperoxide to drive this transformation indicates use of the ferryl‐oxo (Compound I) from the CYP catalytic cycle for this reaction. Together with the confirmed loss of C20 as CO2, this necessitates two catalytic cycles for carbon–carbon bond scission and γ‐lactone formation. The ability of CYP112 to hydroxylate the δ‐lactone form of GA15, shown by the labeling studies, is consistent with the implied use of a further oxygenated heterocycle in the final conversion of GA24into GA9, with the partial labeling of GA9, thus demonstrating that CYP112 partitions its reactants between two diverging mechanisms.

     
    more » « less