skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Independence number of hypergraphs under degree conditions
Abstract A well‐known result of Ajtai Komlós, Pintz, Spencer, and Szemerédi (J. Combin. Theory Ser. A32(1982), 321–335) states that every ‐graph on vertices, with girth at least five, and average degree contains an independent set of size for some . In this paper we show that an independent set of the same size can be found under weaker conditions allowing certain cycles of length 2, 3, and 4. Our work is motivated by a problem of Lo and Zhao, who asked for , how large of an independent set a ‐graph on vertices necessarily has when its maximum ‐degree . (The corresponding problem with respect to ‐degrees was solved by Kostochka, Mubayi, and Verstraëte (Random Struct. & Algorithms44(2014), 224–239).) In this paper we show that every ‐graph on vertices with contains an independent set of size , and under additional conditions, an independent set of size . The former assertion gives a new upper bound for the ‐degree Turán density of complete ‐graphs.  more » « less
Award ID(s):
2300346
PAR ID:
10419008
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Random Structures & Algorithms
Volume:
63
Issue:
3
ISSN:
1042-9832
Page Range / eLocation ID:
p. 821-863
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In the Maximum Independent Set problem we are asked to find a set of pairwise nonadjacent vertices in a given graph with the maximum possible cardinality. In general graphs, this classical problem is known to be NP-hard and hard to approximate within a factor of n1−ε for any ε > 0. Due to this, investigating the complexity of Maximum Independent Set in various graph classes in hope of finding better tractability results is an active research direction. In H-free graphs, that is, graphs not containing a fixed graph H as an induced subgraph, the problem is known to remain NP-hard and APX-hard whenever H contains a cycle, a vertex of degree at least four, or two vertices of degree at least three in one connected component. For the remaining cases, where every component of H is a path or a subdivided claw, the complexity of Maximum Independent Set remains widely open, with only a handful of polynomial-time solvability results for small graphs H such as P5, P6, the claw, or the fork. We prove that for every such “possibly tractable” graph H there exists an algorithm that, given an H-free graph G and an accuracy parameter ε > 0, finds an independent set in G of cardinality within a factor of (1 – ε) of the optimum in time exponential in a polynomial of log | V(G) | and ε−1. That is, we show that for every graph H for which Maximum Independent Set is not known to be APX-hard in H-free graphs, the problem admits a quasi-polynomial time approximation scheme in this graph class. Our algorithm works also in the more general weighted setting, where the input graph is supplied with a weight function on vertices and we are maximizing the total weight of an independent set. 
    more » « less
  2. We give a combinatorial polynomial-time algorithm to find a maximum weight independent set in perfect graphs of bounded degree that do not contain a prism or a hole of length four as an induced subgraph. An even pair in a graph is a pair of vertices all induced paths between which are even. An even set is a set of vertices every two of which are an even pair. We show that every perfect graph that does not contain a prism or a hole of length four as an induced subgraph has a balanced separator which is the union of a bounded number of even sets, where the bound depends only on the maximum degree of the graph. This allows us to solve the maximum weight independent set problem using the well-known submodular function minimization algorithm. Funding: This work was supported by the Engineering and Physical Sciences Research Council [Grant EP/V002813/1]; the National Science Foundation [Grants DMS-1763817, DMS-2120644, and DMS-2303251]; and Alexander von Humboldt-Stiftung. 
    more » « less
  3. Abstract We present progress on three old conjectures about longest paths and cycles in graphs. The first pair of conjectures, due to Lovász from 1969 and Thomassen from 1978, respectively, states that all connected vertex‐transitive graphs contain a Hamiltonian path, and that all sufficiently large such graphs even contain a Hamiltonian cycle. The third conjecture, due to Smith from 1984, states that for in every ‐connected graph any two longest cycles intersect in at least vertices. In this paper, we prove a new lemma about the intersection of longest cycles in a graph, which can be used to improve the best known bounds toward all the aforementioned conjectures: First, we show that every connected vertex‐transitive graph on vertices contains a cycle (and hence path) of length at least , improving on from DeVos [arXiv:2302:04255, 2023]. Second, we show that in every ‐connected graph with , any two longest cycles meet in at least vertices, improving on from Chen, Faudree, and Gould [J. Combin. Theory, Ser. B,72(1998) no. 1, 143–149]. Our proof combines combinatorial arguments, computer search, and linear programming. 
    more » « less
  4. Abstract We suggest two related conjectures dealing with the existence of spanning irregular subgraphs of graphs. The first asserts that any $$d$$ -regular graph on $$n$$ vertices contains a spanning subgraph in which the number of vertices of each degree between $$0$$ and $$d$$ deviates from $$\frac{n}{d+1}$$ by at most $$2$$ . The second is that every graph on $$n$$ vertices with minimum degree $$\delta$$ contains a spanning subgraph in which the number of vertices of each degree does not exceed $$\frac{n}{\delta +1}+2$$ . Both conjectures remain open, but we prove several asymptotic relaxations for graphs with a large number of vertices $$n$$ . In particular we show that if $$d^3 \log n \leq o(n)$$ then every $$d$$ -regular graph with $$n$$ vertices contains a spanning subgraph in which the number of vertices of each degree between $$0$$ and $$d$$ is $$(1+o(1))\frac{n}{d+1}$$ . We also prove that any graph with $$n$$ vertices and minimum degree $$\delta$$ contains a spanning subgraph in which no degree is repeated more than $$(1+o(1))\frac{n}{\delta +1}+2$$ times. 
    more » « less
  5. Beyersdorff, Olaf; Kanté, Mamadou Moustapha; Kupferman, Orna; Lokshtanov, Daniel (Ed.)
    We revisit the recent polynomial-time algorithm for the Max Weight Independent Set (MWIS) problem in bounded-degree graphs that do not contain a fixed graph whose every component is a subdivided claw as an induced subgraph [Abrishami, Chudnovsky, Dibek, Rzążewski, SODA 2022]. First, we show that with an arguably simpler approach we can obtain a faster algorithm with running time n^{𝒪(Δ²)}, where n is the number of vertices of the instance and Δ is the maximum degree. Then we combine our technique with known results concerning tree decompositions and provide a polynomial-time algorithm for MWIS in graphs excluding a fixed graph whose every component is a subdivided claw as an induced subgraph, and a fixed biclique as a subgraph. 
    more » « less