skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2300346

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract A well‐known result of Ajtai Komlós, Pintz, Spencer, and Szemerédi (J. Combin. Theory Ser. A32(1982), 321–335) states that every ‐graph on vertices, with girth at least five, and average degree contains an independent set of size for some . In this paper we show that an independent set of the same size can be found under weaker conditions allowing certain cycles of length 2, 3, and 4. Our work is motivated by a problem of Lo and Zhao, who asked for , how large of an independent set a ‐graph on vertices necessarily has when its maximum ‐degree . (The corresponding problem with respect to ‐degrees was solved by Kostochka, Mubayi, and Verstraëte (Random Struct. & Algorithms44(2014), 224–239).) In this paper we show that every ‐graph on vertices with contains an independent set of size , and under additional conditions, an independent set of size . The former assertion gives a new upper bound for the ‐degree Turán density of complete ‐graphs. 
    more » « less
  2. Free, publicly-accessible full text available May 1, 2026