Bridging the current gap between the precision and efficiency demonstrated by natural systems and synthetic materials requires interfacing and independently controlling multiple stimuli-responsive building blocks in a single platform. The mentioned orthogonal control over material properties (i.e., the ability to selectively activate one stimuli-responsive moiety without affecting another) could pave the way for a multitude of applications, including logic-gated optoelectronics, on-demand drug delivery platforms, and molecular shuttles, for example. In this Review, we highlight the recent successful strategies to achieve orthogonal control over material properties using a combination of stimuli-responsive building blocks and multiple independent stimuli. We begin by surveying the fundamental studies of multi-stimuli-responsive systems, which utilize a variety of stimuli to activate a single stimuli-responsive moiety (e.g., spiropyran, diarylethene, or dihydroazulene derivatives), because these studies lay the foundation for the design of systems containing more than one independently controlled fragment. As a next step, we overview the emerging field focusing on systems which are composed of more than one unique stimuli-responsive unit that can respond to independent stimuli, including distinct excitation wavelengths, or a combination of light, heat, pH, potential, or ionic strength. Recent advances clearly demonstrate how strategic coupling of orthogonally controlled stimuli-responsive units can allow for selective modulation of a range of material properties, such as conductivity, catalytic performance, and biological activity. Thus, the highlighted studies foreshadow the emerging role of materials with orthogonally controlled properties to impact the next generation of photopharmacology, nanotechnology, optoelectronics, and biomimetics.
more »
« less
Traffic Lights for Catalysis: Stimuli‐Responsive Molecular and Extended Catalytic Systems
Abstract The advances made in the field of stimuli‐responsive catalysis during the last five years with a focus on the novel recently‐emerged directions and applications have been surveyed. Metal‐free catalysts and organometallic complexes, as well as biomimetic systems and extended structures, which display switchable catalytic activity for a variety of organic transformations, are discussed. Light‐activated systems comprised of photochromic molecules capable of modulating reaction rate, yield, or enantioselectivity based on geometric and electronic changes associated with photoisomerization are the focus of the detailed discussion. Alternative stimuli, including pH and temperature, which could be applied either alone or in combination with light, are also addressed. Recent advances clearly demonstrate that the capability to finely tune catalyst behavior via an external stimulus is a powerful tool that could alter the landscape of sustainable chemistry.
more »
« less
- Award ID(s):
- 2103722
- PAR ID:
- 10419012
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- Volume:
- 62
- Issue:
- 29
- ISSN:
- 1433-7851
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Light serves as a pivotal environmental cue regulating various aspects of plant growth and development, including seed germination, seedling de-etiolation, and shade avoidance. Within this regulatory framework, the basic helix–loop–helix transcription factors known as phytochrome-interacting factors (PIFs) play an essential role in orchestrating responses to light stimuli. Phytochromes, acting as red/far-red light receptors, initiate a cascade of events leading to the degradation of PIFs (except PIF7), thereby triggering transcriptional reprogramming to facilitate photomorphogenesis. Recent research has unveiled multiple post-translational modifications that regulate the abundance and/or activity of PIFs, including phosphorylation, dephosphorylation, ubiquitination, deubiquitination, and SUMOylation. Moreover, intriguing findings indicate that PIFs can influence chromatin modifications. These include modulation of histone 3 lysine 9 acetylation (H3K9ac), as well as occupancy of histone variants such as H2A.Z (associated with gene repression) and H3.3 (associated with gene activation), thereby intricately regulating downstream gene expression in response to environmental cues. This review summarizes recent advances in understanding the role of PIFs in regulating various signaling pathways, with a major focus on photomorphogenesis.more » « less
-
Abstract Shape morphing of stimuli‐responsive composite hydrogels has received considerable attention in different research fields. Although various multilayer structures with dissimilar materials are studied to achieve shape morphing, combining swellable hydrogel layers with non‐swellable layers results in issues with interface adhesion and structural integrity. In this study, single‐hydrogel‐based bilayer actuators comprising poly(N‐isopropylacrylamide) (PNIPAM) matrices and graphene oxide (GO)–PNIPAM hinges are presented. Upon temperature rising, the PNIPAM hydrogel acts as the passive layer due to the formation of dense microstructures near the surface (i.e., the skin layer effect), whereas the GO‐PNIPAM hydrogel functions as the active layer, maintaining porous due to structural modification by the presence of GO. Under light exposure, the GO‐PNIPAM hinges experience selective heating due to the photothermal effect of GO. Consequently, the resulting bilayer structures exhibit programmable dual‐responsive 3D shape morphing. Additionally, the folding kinetics of these actuators can be adjusted based on the applied stimulus (temperature changes or light), as they are driven by different mechanisms, the skin layer, or photothermal effects, respectively. Furthermore, the hinge‐based bilayer structures demonstrate walking and steering locomotion by light exposure. This approach can lead to advances in soft robotics, biomimetic systems, and autonomous soft actuators in hydrogel‐based systems.more » « less
-
Abstract Known for their adaptability to surroundings, capability of transport control of molecules, or the ability of converting one type of energy to another as a result of external or internal stimuli, responsive polymers play a significant role in advancing scientific discoveries that may lead to an array of diverge applications. This review outlines recent advances in the developments of selected commodity polymers equipped with stimuli‐responsiveness to temperature, pH, ionic strength, enzyme or glucose levels, carbon dioxide, water, redox agents, electromagnetic radiation, or electric and magnetic fields. Utilized diverse applications ranging from drug delivery to biosensing, dynamic structural components to color‐changing coatings, this review focuses on commodity acrylics, epoxies, esters, carbonates, urethanes, and siloxane‐based polymers containing responsive elements built into their architecture. In the context of stimuli‐responsive chemistries, current technological advances as well as a critical outline of future opportunities and applications are also tackled.more » « less
-
Since its inception, atom transfer radical polymerization (ATRP) has seen continuous evolution in terms of the design of the catalyst and reaction conditions; today, it is one of the most useful techniques to prepare well-defined polymers as well as one of the most notable examples of catalysis in polymer chemistry. This Perspective highlights fundamental advances in the design of ATRP reactions and catalysts, focusing on the crucial role that mechanistic studies play in understanding, rationalizing, and predicting polymerization outcomes. A critical summary of traditional ATRP systems is provided first; we then focus on the most recent developments to improve catalyst selectivity, control polymerizations via external stimuli, and employ new photochemical or dual catalytic systems with an outlook to future research directions and open challenges.more » « less
An official website of the United States government
