Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Photochromic materials with properties that can be dynamically tailored as a function of external stimuli are a rapidly expanding field driven by applications in areas ranging from molecular computing, nanotechnology, or photopharmacology to programable heterogeneous catalysis. Challenges arise, however, when translating the rapid, solution‐like response of stimuli‐responsive moieties to solid‐state materials due to the intermolecular interactions imposed through close molecular packing in bulk solids. As a result, the integration of photochromic compounds into synthetically programable porous matrices, such as metal‐organic frameworks (MOFs), has come to the forefront as an emerging strategy for photochromic material development. This review highlights how the core principles of reticular chemistry (on the example of MOFs) play a critical role in the photochromic material performance, surpassing the limitations previously observed in solution or solid state. The symbiotic relationship between photoresponsive compounds and porous frameworks with a focus on how reticular synthesis creates avenues toward tailorable photoisomerization kinetics, directional energy and charge transfer, switchable gas sorption, and synergistic chromophore communication is discussed. This review not only focuses on the recent cutting‐edge advancements in photochromic material development, but also highlights novel, vital‐to‐pursue pathways for multifaceted functional materials in the realms of energy, technology, and biomedicine.more » « less
-
Abstract In this work, we report the regiospecific and stereoselective synthesis of novel pyrrolo thioxoimidazolidinones with promising biological activities due to the inherent pharmaceutical properties of thioxoimidazolidinone core. The reaction of different thioxoimidazolidinones withtrans‐4‐ethoxy‐1,1,1‐trifluorobut‐3‐en‐2‐one (ETFBO) yields bicyclic 1,3‐diaza heterocycles bearing the trifluoromethyl (CF3) moiety. Our investigation involved both depth experimental analysis and theoretical calculations to fathom out the mode of reaction of this building block and elucidate the underlying mechanism operating for the observed reactions. Remarkably, this unusual mechanism retained the ethanol moiety from the building block in the final products, deviating from conventional nucleophilic reactions reported in the literature.more » « less
-
Abstract The forthcoming generation of materials, including artificial muscles, recyclable and healable systems, photochromic heterogeneous catalysts, or tailorable supercapacitors, relies on the fundamental concept of rapid switching between two or more discrete forms in the solid state. Herein, we report a breakthrough in the “speed limit” of photochromic molecules on the example of sterically-demanding spiropyran derivatives through their integration within solvent-free confined space, allowing for engineering of the photoresponsive moiety environment and tailoring their photoisomerization rates. The presented conceptual approach realized through construction of the spiropyran environment results in ~1000 times switching enhancement even in the solid state compared to its behavior in solution, setting a record in the field of photochromic compounds. Moreover, integration of two distinct photochromic moieties in the same framework provided access to a dynamic range of rates as well as complementary switching in the material’s optical profile, uncovering a previously inaccessible pathway for interstate rapid photoisomerization.more » « less
-
Abstract The advances made in the field of stimuli‐responsive catalysis during the last five years with a focus on the novel recently‐emerged directions and applications have been surveyed. Metal‐free catalysts and organometallic complexes, as well as biomimetic systems and extended structures, which display switchable catalytic activity for a variety of organic transformations, are discussed. Light‐activated systems comprised of photochromic molecules capable of modulating reaction rate, yield, or enantioselectivity based on geometric and electronic changes associated with photoisomerization are the focus of the detailed discussion. Alternative stimuli, including pH and temperature, which could be applied either alone or in combination with light, are also addressed. Recent advances clearly demonstrate that the capability to finely tune catalyst behavior via an external stimulus is a powerful tool that could alter the landscape of sustainable chemistry.more » « less
-
Free, publicly-accessible full text available November 20, 2025
-
Bridging the current gap between the precision and efficiency demonstrated by natural systems and synthetic materials requires interfacing and independently controlling multiple stimuli-responsive building blocks in a single platform. The mentioned orthogonal control over material properties (i.e., the ability to selectively activate one stimuli-responsive moiety without affecting another) could pave the way for a multitude of applications, including logic-gated optoelectronics, on-demand drug delivery platforms, and molecular shuttles, for example. In this Review, we highlight the recent successful strategies to achieve orthogonal control over material properties using a combination of stimuli-responsive building blocks and multiple independent stimuli. We begin by surveying the fundamental studies of multi-stimuli-responsive systems, which utilize a variety of stimuli to activate a single stimuli-responsive moiety (e.g., spiropyran, diarylethene, or dihydroazulene derivatives), because these studies lay the foundation for the design of systems containing more than one independently controlled fragment. As a next step, we overview the emerging field focusing on systems which are composed of more than one unique stimuli-responsive unit that can respond to independent stimuli, including distinct excitation wavelengths, or a combination of light, heat, pH, potential, or ionic strength. Recent advances clearly demonstrate how strategic coupling of orthogonally controlled stimuli-responsive units can allow for selective modulation of a range of material properties, such as conductivity, catalytic performance, and biological activity. Thus, the highlighted studies foreshadow the emerging role of materials with orthogonally controlled properties to impact the next generation of photopharmacology, nanotechnology, optoelectronics, and biomimetics.more » « less