skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A distributed‐order fractional diffusion equation with a singular density function: Analysis and approximation
We prove the well‐posedness and smoothing properties of a distributed‐order time‐fractional diffusion equation with a singular density function in multiple space dimensions, which could model the ultraslow subdiffusion processes. We accordingly derive a finite element approximation to the problem and prove its optimal‐order error estimate. Numerical results are presented to support the mathematical and numerical analysis.  more » « less
Award ID(s):
2012291
PAR ID:
10419051
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Mathematical Methods in the Applied Sciences
Volume:
46
Issue:
8
ISSN:
0170-4214
Format(s):
Medium: X Size: p. 9819-9833
Size(s):
p. 9819-9833
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In this paper, we study superconvergence properties of the ultraweak-local discontinuous Galerkin (UWLDG) method in Tao et al. [To appear in Math. Comput. DOI: https://doi.org/10.1090/mcom/3562 (2020).] for an one-dimensional linear fourth-order equation. With special initial discretizations, we prove the numerical solution of the semi-discrete UWLDG scheme superconverges to a special projection of the exact solution. The order of this superconvergence is proved to be k + min(3, k ) when piecewise ℙ k polynomials with k ≥ 2 are used. We also prove a 2 k -th order superconvergence rate for the cell averages and for the function values and derivatives of the UWLDG approximation at cell boundaries. Moreover, we prove superconvergence of ( k + 2)-th and ( k + 1)-th order of the function values and the first order derivatives of the UWLDG solution at a class of special quadrature points, respectively. Our proof is valid for arbitrary non-uniform regular meshes and for arbitrary k ≥ 2. Numerical experiments verify that all theoretical findings are sharp. 
    more » « less
  2. null (Ed.)
    In this paper, we propose a local discontinuous Galerkin (LDG) method for nonlinear and possibly degenerate parabolic stochastic partial differential equations, which is a high-order numerical scheme. It extends the discontinuous Galerkin (DG) method for purely hyperbolic equations to parabolic equations and shares with the DG method its advantage and flexibility. We prove the L 2 -stability of the numerical scheme for fully nonlinear equations. Optimal error estimates ( O ( h (k+1) )) for smooth solutions of semi-linear stochastic equations is shown if polynomials of degree k are used. We use an explicit derivative-free order 1.5 time discretization scheme to solve the matrix-valued stochastic ordinary differential equations derived from the spatial discretization. Numerical examples are given to display the performance of the LDG method. 
    more » « less
  3. null (Ed.)
    We prove well-posedness and regularity of solutions to a fractional diffusion porous media equation with a variable fractional order that may depend on the unknown solution. We present a linearly implicit time-stepping method to linearize and discretize the equation in time, and present rigorous analysis for the convergence of numerical solutions based on proved regularity results. 
    more » « less
  4. This work is focused on the mathematical and computational modeling of bioconvection, which describes the mixing of fluid and micro-organisms exhibiting negative geotaxis movement under the force of gravity. The collective population moves towards the surface of the fluid, generating a Rayleigh–Taylor instability, where initial fingers of organisms plummet to the bottom. The inherent drive to swim vertically generates large collective flow patterns that persist in time. We model the flow using the Navier–Stokes equations for an incompressible, viscous fluid, coupled with the transport equation describing the concentration of the micro-organisms. We use a nonlinear semigroup approach to prove the existence of solutions. We propose a partitioned, second-order, time adaptive numerical method based on the Cauchy’s one-legged ‘-like’ scheme. We prove that the method is energy-stable, and for small time steps, the iterative procedure in the partitioned algorithm is linearly convergent. The numerical results confirm the expected second-order of accuracy. We also present a computational study of a chaotic system describing bioconvection of motile flagellates. 
    more » « less
  5. null (Ed.)
    Abstract Variable-order space-fractional diffusion equations provide very competitive modeling capabilities of challenging phenomena, including anomalously superdiffusive transport of solutes in heterogeneous porous media, long-range spatial interactions and other applications, as well as eliminating the nonphysical boundary layers of the solutions to their constant-order analogues.In this paper, we prove the uniqueness of determining the variable fractional order of the homogeneous Dirichlet boundary-value problem of the one-sided linear variable-order space-fractional diffusion equation with some observed values of the unknown solutions near the boundary of the spatial domain.We base on the analysis to develop a spectral-Galerkin Levenberg–Marquardt method and a finite difference Levenberg–Marquardt method to numerically invert the variable order.We carry out numerical experiments to investigate the numerical performance of these methods. 
    more » « less