In this paper we propose and analyze finite element discontinuous Galerkin methods for the one- and two-dimensional stochastic Maxwell equations with multiplicative noise. The discrete energy law of the semi-discrete DG methods were studied. Optimal error estimate of the semi-discrete method is obtained for the one-dimensional case, and the two-dimensional case on both rectangular meshes and triangular meshes under certain mesh assumptions. Strong Taylor 2.0 scheme is used as the temporal discretization. Both one- and two-dimensional numerical results are presented to validate the theoretical analysis results.
more »
« less
A local discontinuous Galerkin method for nonlinear parabolic SPDEs
In this paper, we propose a local discontinuous Galerkin (LDG) method for nonlinear and possibly degenerate parabolic stochastic partial differential equations, which is a high-order numerical scheme. It extends the discontinuous Galerkin (DG) method for purely hyperbolic equations to parabolic equations and shares with the DG method its advantage and flexibility. We prove the L 2 -stability of the numerical scheme for fully nonlinear equations. Optimal error estimates ( O ( h (k+1) )) for smooth solutions of semi-linear stochastic equations is shown if polynomials of degree k are used. We use an explicit derivative-free order 1.5 time discretization scheme to solve the matrix-valued stochastic ordinary differential equations derived from the spatial discretization. Numerical examples are given to display the performance of the LDG method.
more »
« less
- Award ID(s):
- 1719410
- PAR ID:
- 10226111
- Date Published:
- Journal Name:
- ESAIM: Mathematical Modelling and Numerical Analysis
- Volume:
- 55
- Issue:
- Supplement
- ISSN:
- 0764-583X
- Page Range / eLocation ID:
- S187 to S223
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract In this paper, we study the superconvergence of the semi-discrete discontinuous Galerkin (DG) method for linear hyperbolic equations in one spatial dimension. The asymptotic errors in cell averages, downwind point values, and the postprocessed solution are derived for the initial discretization by Gaussian projection (for periodic boundary condition) or Cao projection Cao et al. (SIAM J. Numer. Anal.5, 2555–2573 (2014)) (for Dirichlet boundary condition). We proved that the error constant in the superconvergence of order$$2k+1$$ for DG methods based on upwind-biased fluxes depends on the parity of the orderk. The asymptotic errors are demonstrated by various numerical experiments for scalar and vector hyperbolic equations.more » « less
-
null (Ed.)In this paper, we study the central discontinuous Galerkin (DG) method on overlapping meshes for second order wave equations. We consider the first order hyperbolic system, which is equivalent to the second order scalar equation, and construct the corresponding central DG scheme. We then provide the stability analysis and the optimal error estimates for the proposed central DG scheme for one- and multi-dimensional cases with piecewise P k elements. The optimal error estimates are valid for uniform Cartesian meshes and polynomials of arbitrary degree k ≥ 0. In particular, we adopt the techniques in Liu et al . ( SIAM J. Numer. Anal. 56 (2018) 520–541; ESAIM: M2AN 54 (2020) 705–726) and obtain the local projection that is crucial in deriving the optimal order of convergence. The construction of the projection here is more challenging since the unknowns are highly coupled in the proposed scheme. Dispersion analysis is performed on the proposed scheme for one dimensional problems, indicating that the numerical solution with P 1 elements reaches its minimum with a suitable parameter in the dissipation term. Several numerical examples including accuracy tests and long time simulation are presented to validate the theoretical results.more » « less
-
In this paper, we propose a local discontinuous Galerkin (LDG) method for the Novikov equation that contains cubic nonlinear high-order derivatives. Flux correction techniques are used to ensure the stability of the numerical scheme. The -norm stability of the general solution and the error estimate for smooth solutions without using any priori assumptions are presented. Numerical examples demonstrate the accuracy and capability of the LDG method for solving the Novikov equation.more » « less
-
Abstract In this paper, we develop a local discontinuous Galerkin (LDG) method to simulate the wave propagation in an electromagnetic concentrator. The concentrator model consists of a coupled system of four partial differential equations and one ordinary differential equation. Discrete stability and error estimate are proved for both semi‐discrete and full‐discrete LDG schemes. Numerical results are presented to justify the theoretical analysis and demonstrate the interesting wave concentration property by the electromagnetic concentrator.more » « less
An official website of the United States government

