skip to main content


Title: Capturing long‐tailed individual tree diversity using an airborne imaging and a multi‐temporal hierarchical model
Abstract

Measuring forest biodiversity using terrestrial surveys is expensive and can only capture common species abundance in large heterogeneous landscapes. In contrast, combining airborne imagery with computer vision can generate individual tree data at the scales of hundreds of thousands of trees. To train computer vision models, ground‐based species labels are combined with airborne reflectance data. Due to the difficulty of finding rare species in a large landscape, many classification models only include the most abundant species, leading to biased predictions at broad scales. For example, if only common species are used to train the model, this assumes that these samples are representative across the entire landscape. Extending classification models to include rare species requires targeted data collection and algorithmic improvements to overcome large data imbalances between dominant and rare taxa. We use a targeted sampling workflow to the Ordway Swisher Biological Station within the US National Ecological Observatory Network (NEON), where traditional forestry plots had identified six canopy tree species with more than 10 individuals at the site. Combining iterative model development with rare species sampling, we extend a training dataset to include 14 species. Using a multi‐temporal hierarchical model, we demonstrate the ability to include species predicted at <1% frequency in landscape without losing performance on the dominant species. The final model has over 75% accuracy for 14 species with improved rare species classification compared to 61% accuracy of a baseline deep learning model. After filtering out dead trees, we generate landscape species maps of individual crowns for over 670 000 individual trees. We find distinct patches of forest composed of rarer species at the full‐site scale, highlighting the importance of capturing species diversity in training data. We estimate the relative abundance of 14 species within the landscape and provide three measures of uncertainty to generate a range of counts for each species. For example, we estimate that the dominant species,Pinus palustrisaccounts for c. 28% of predicted stems, with models predicting a range of counts between 160 000 and 210 000 individuals. These maps provide the first estimates of canopy tree diversity within a NEON site to include rare species and provide a blueprint for capturing tree diversity using airborne computer vision at broad scales.

 
more » « less
Award ID(s):
1926542 1638720
NSF-PAR ID:
10419076
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Remote Sensing in Ecology and Conservation
Volume:
9
Issue:
5
ISSN:
2056-3485
Format(s):
Medium: X Size: p. 656-670
Size(s):
p. 656-670
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Accurately mapping tree species composition and diversity is a critical step towards spatially explicit and species-specific ecological understanding. The National Ecological Observatory Network (NEON) is a valuable source of open ecological data across the United States. Freely available NEON data include in-situ measurements of individual trees, including stem locations, species, and crown diameter, along with the NEON Airborne Observation Platform (AOP) airborne remote sensing imagery, including hyperspectral, multispectral, and light detection and ranging (LiDAR) data products. An important aspect of predicting species using remote sensing data is creating high-quality training sets for optimal classification purposes. Ultimately, manually creating training data is an expensive and time-consuming task that relies on human analyst decisions and may require external data sets or information. We combine in-situ and airborne remote sensing NEON data to evaluate the impact of automated training set preparation and a novel data preprocessing workflow on classifying the four dominant subalpine coniferous tree species at the Niwot Ridge Mountain Research Station forested NEON site in Colorado, USA. We trained pixel-based Random Forest (RF) machine learning models using a series of training data sets along with remote sensing raster data as descriptive features. The highest classification accuracies, 69% and 60% based on internal RF error assessment and an independent validation set, respectively, were obtained using circular tree crown polygons created with half the maximum crown diameter per tree. LiDAR-derived data products were the most important features for species classification, followed by vegetation indices. This work contributes to the open development of well-labeled training data sets for forest composition mapping using openly available NEON data without requiring external data collection, manual delineation steps, or site-specific parameters. 
    more » « less
  2. Abstract Aim

    Rapid global change is impacting the diversity of tree species and essential ecosystem functions and services of forests. It is therefore critical to understand and predict how the diversity of tree species is spatially distributed within and among forest biomes. Satellite remote sensing platforms have been used for decades to map forest structure and function but are limited in their capacity to monitor change by their relatively coarse spatial resolution and the complexity of scales at which different dimensions of biodiversity are observed in the field. Recently, airborne remote sensing platforms making use of passive high spectral resolution (i.e., hyperspectral) and active lidar data have been operationalized, providing an opportunity to disentangle how biodiversity patterns vary across space and time from field observations to larger scales. Most studies to date have focused on single sites and/or one sensor type; here we ask how multiple sensor types from the National Ecological Observatory Network’s Airborne Observation Platform (NEON AOP) perform across multiple sites in a single biome at the NEON field plot scale (i.e., 40 m × 40 m).

    Location

    Eastern USA.

    Time period

    2017–2018.

    Taxa studied

    Trees.

    Methods

    With a fusion of hyperspectral and lidar data from the NEON AOP, we assess the ability of high resolution remotely sensed metrics to measure biodiversity variation across eastern US temperate forests. We examine how taxonomic, functional, and phylogenetic measures of alpha diversity vary spatially and assess to what degree remotely sensed metrics correlate with in situ biodiversity metrics.

    Results

    Models using estimates of forest function, canopy structure, and topographic diversity performed better than models containing each category alone. Our results show that canopy structural diversity, and not just spectral reflectance, is critical to predicting biodiversity.

    Main conclusions

    We found that an approach that jointly leverages spectral properties related to leaf and canopy functional traits and forest health, lidar derived estimates of forest structure, fine‐resolution topographic diversity, and careful consideration of biogeographical differences within and among biomes is needed to accurately map biodiversity variation from above.

     
    more » « less
  3. Abstract

    Plant functional diversity is strongly connected to photosynthetic carbon assimilation in terrestrial ecosystems. However, many of the plant functional traits that regulate photosynthetic capacity, including foliar nitrogen concentration and leaf mass per area, vary significantly between and within plant functional types and vertically through forest canopies, resulting in considerable landscape‐scale heterogeneity in three dimensions. Hyperspectral imagery has been used extensively to quantify functional traits across a range of ecosystems but is generally limited to providing information for top of canopy leaves only. On the other hand, lidar data can be used to retrieve the vertical structure of forest canopies. Because these data are rarely collected at the same time, there are unanswered questions about the effect of forest structure on the three ‐dimensional spatial patterns of functional traits across ecosystems. In the United States, the National Ecological Observatory Network's Airborne Observation Platform (NEON AOP) provides an opportunity to address this structure‐function relationship by collecting lidar and hyperspectral data together across a variety of ecoregions. With a fusion of hyperspectral and lidar data from the NEON AOP and field‐collected foliar trait data, we assessed the impacts of forest structure on spatial patterns of N. In addition, we examine the influence of abiotic gradients and management regimes on top‐of‐canopy percent N and total canopy N (i.e., the total amount of N [g/m2] within a forest canopy) at a NEON site consisting of a mosaic of open longleaf pine and dense broadleaf deciduous forests. Our resulting maps suggest that, in contrast to top of canopy values, total canopy N variation is dampened across this landscape resulting in relatively homogeneous spatial patterns. At the same time, we found that leaf functional diversity and canopy structural diversity showed distinct dendritic patterns related to the spatial distribution of plant functional types.

     
    more » « less
  4. Abstract

    Tree canopy cover is a critical component of the urban environment that supports ecosystem services at multiple spatial and temporal scales. Increasing tree canopy across a matrix of public and private land is challenging. As such, municipalities often plant trees along streets in public rights‐of‐way where there are fewer barriers to establishment, and composition and biomass of street trees are inextricably linked to human decisions, management, and care. In this study, we investigated the contributions of street trees to the broader urban forest, inclusive of tree canopy distributed across both public and private parcels in Baltimore, MD, USA. We assess how species composition, biodiversity, and biomass of street trees specifically augment the urban forest at local and citywide scales. Furthermore, we evaluate how street tree contributions to the urban forest vary with social and demographic characteristics of local residential communities. Our analyses demonstrate that street trees significantly enhanced citywide metrics of the urban forests' richness and tree biomass, adding an average six unique species per site. However, street tree contributions did not ameliorate low tree canopy locations, and more street tree biomass was generally aligned with higher urban forest cover. Furthermore, species richness, abundance, and biomass added by street trees were all positively related to local household income and population density. Our results corroborate previous findings that wealthier urban neighborhoods often have greater tree abundance and canopy cover and, additionally, suggest that investment in municipally managed street trees may be reinforcing inequities in distribution and function of the urban forest. This suggests a need for greater attention to where and why street tree plantings occur, what species are selected, and how planted tree survival is maintained by and for residents in different neighborhoods.

     
    more » « less
  5. The hemlock woolly adelgid (HWA; Adelges tsugae) is an invasive insect infestation that is spreading into the forests of the northeastern United States, driven by the warmer winter temperatures associated with climate change. The initial stages of this disturbance are difficult to detect with passive optical remote sensing, since the insect often causes its host species, eastern hemlock trees (Tsuga canadensis), to defoliate in the midstory and understory before showing impacts in the overstory. New active remote sensing technologies—such as the recently launched NASA Global Ecosystem Dynamics Investigation (GEDI) spaceborne lidar—can address this limitation by penetrating canopy gaps and recording lower canopy structural changes. This study explores new opportunities for monitoring the HWA infestation with airborne lidar scanning (ALS) and GEDI spaceborne lidar data. GEDI waveforms were simulated using airborne lidar datasets from an HWA-infested forest plot at the Harvard Forest ForestGEO site in central Massachusetts. Two airborne lidar instruments, the NASA G-LiHT and the NEON AOP, overflew the site in 2012 and 2016. GEDI waveforms were simulated from each airborne lidar dataset, and the change in waveform metrics from 2012 to 2016 was compared to field-derived hemlock mortality at the ForestGEO site. Hemlock plots were shown to be undergoing dynamic changes as a result of the HWA infestation, losing substantial plant area in the middle canopy, while still growing in the upper canopy. Changes in midstory plant area (PAI 11–12 m above ground) and overall canopy permeability (indicated by RH10) accounted for 60% of the variation in hemlock mortality in a logistic regression model. The robustness of these structure-condition relationships held even when simulated waveforms were treated as real GEDI data with added noise and sparse spatial coverage. These results show promise for future disturbance monitoring studies with ALS and GEDI lidar data. 
    more » « less