skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Individual canopy tree species maps for the National Ecological Observatory Network
The ecology of forest ecosystems depends on the composition of trees. Capturing fine-grained information on individual trees at broad scales provides a unique perspective on forest ecosystems, forest restoration, and responses to disturbance. Individual tree data at wide extents promises to increase the scale of forest analysis, biogeographic research, and ecosystem monitoring without losing details on individual species composition and abundance. Computer vision using deep neural networks can convert raw sensor data into predictions of individual canopy tree species through labeled data collected by field researchers. Using over 40,000 individual tree stems as training data, we create landscape-level species predictions for over 100 million individual trees across 24 sites in the National Ecological Observatory Network (NEON). Using hierarchical multi-temporal models fine-tuned for each geographic area, we produce open-source data available as 1 km2shapefiles with individual tree species prediction, as well as crown location, crown area, and height of 81 canopy tree species. Site-specific models had an average performance of 79% accuracy covering an average of 6 species per site, ranging from 3 to 15 species per site. All predictions are openly archived and have been uploaded to Google Earth Engine to benefit the ecology community and overlay with other remote sensing assets. We outline the potential utility and limitations of these data in ecology and computer vision research, as well as strategies for improving predictions using targeted data sampling.  more » « less
Award ID(s):
2224439 1926542 1638720
PAR ID:
10556428
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Editor(s):
Tanentzap, Andrew J
Publisher / Repository:
Public Library of Science
Date Published:
Journal Name:
PLOS Biology
Volume:
22
Issue:
7
ISSN:
1545-7885
Page Range / eLocation ID:
e3002700
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Weinstein, Ben (Ed.)
    # Individual Tree Predictions for 100 million trees in the National Ecological Observatory Network Preprint: https://www.biorxiv.org/content/10.1101/2023.10.25.563626v1 ## Manuscript Abstract The ecology of forest ecosystems depends on the composition of trees. Capturing fine-grained information on individual trees at broad scales allows an unprecedented view of forest ecosystems, forest restoration and responses to disturbance. To create detailed maps of tree species, airborne remote sensing can cover areas containing millions of trees at high spatial resolution. Individual tree data at wide extents promises to increase the scale of forest analysis, biogeographic research, and ecosystem monitoring without losing details on individual species composition and abundance. Computer vision using deep neural networks can convert raw sensor data into predictions of individual tree species using ground truthed data collected by field researchers. Using over 40,000 individual tree stems as training data, we create landscape-level species predictions for over 100 million individual trees for 24 sites in the National Ecological Observatory Network. Using hierarchical multi-temporal models fine-tuned for each geographic area, we produce open-source data available as 1km^2 shapefiles with individual tree species prediction, as well as crown location, crown area and height of 81 canopy tree species. Site-specific models had an average performance of 79% accuracy covering an average of six species per site, ranging from 3 to 15 species. All predictions were uploaded to Google Earth Engine to benefit the ecology community and overlay with other remote sensing assets. These data can be used to study forest macro-ecology, functional ecology, and responses to anthropogenic change. ## Data Summary Each NEON site is a single zip archive with tree predictions for all available data. For site abbreviations see: https://www.neonscience.org/field-sites/explore-field-sites. For each site, there is a .zip and .csv. The .zip is a set 1km .shp tiles. The .csv is all trees in a single file. ## Prediction metadata *Geometry* A four pointed bounding box location in utm coordinates. *indiv_id* A unique crown identifier that combines the year, site and geoindex of the NEON airborne tile (e.g. 732000_4707000) is the utm coordinate of the top left of the tile.  *sci_name* The full latin name of predicted species aligned with NEON's taxonomic nomenclature.  *ens_score* The confidence score of the species prediction. This score is the output of the multi-temporal model for the ensemble hierarchical model.  *bleaf_taxa* Highest predicted category for the broadleaf submodel *bleaf_score* The confidence score for the broadleaf taxa submodel  *oak_taxa* Highest predicted category for the oak model  *dead_label* A two class alive/dead classification based on the RGB data. 0=Alive/1=Dead. *dead_score* The confidence score of the Alive/Dead prediction.  *site_id* The four letter code for the NEON site. See https://www.neonscience.org/field-sites/explore-field-sites for site locations. *conif_taxa* Highest predicted category for the conifer model *conif_score* The confidence score for the conifer taxa submodel *dom_taxa* Highest predicted category for the dominant taxa mode submodel *dom_score* The confidence score for the dominant taxa submodel ## Training data The crops.zip contains pre-cropped files. 369 band hyperspectral files are numpy arrays. RGB crops are .tif files. Naming format is __, for example. "NEON.PLA.D07.GRSM.00583_2022_RGB.tif" is RGB crop of the predicted crown of NEON data from Great Smoky Mountain National Park (GRSM), flown in 2022.Along with the crops are .csv files for various train-test split experiments for the manuscript. ### Crop metadata There are 30,042 individuals in the annotations.csv file. We keep all data, but we recommend a filtering step of atleast 20 records per species to reduce chance of taxonomic or data cleaning errors. This leaves 132 species. *score* This was the DeepForest crown score for the crop. *taxonID*For letter species code, see NEON plant taxonomy for scientific name: https://data.neonscience.org/taxonomic-lists *individual*unique individual identifier for a given field record and crown crop *siteID*The four letter code for the NEON site. See https://www.neonscience.org/field-sites/explore-field-sites for site locations. *plotID* NEON plot ID within the site. For more information on NEON sampling see: https://www.neonscience.org/data-samples/data-collection/observational-sampling/site-level-sampling-design *CHM_height* The LiDAR derived height for the field sampling point. *image_path* Relative pathname for the hyperspectral array, can be read by numpy.load -> format of 369 bands * Height * Weight *tile_year*  Flight year of the sensor data *RGB_image_path* Relative pathname for the RGB array, can be read by rasterio.open() # Code repository The predictions were made using the DeepTreeAttention repo: https://github.com/weecology/DeepTreeAttentionKey files include model definition for a [single year model](https://github.com/weecology/DeepTreeAttention/blob/main/src/models/Hang2020.py) and [Data preprocessing](https://github.com/weecology/DeepTreeAttention/blob/cae13f1e4271b5386e2379068f8239de3033ec40/src/utils.py#L59). 
    more » « less
  2. null (Ed.)
    Forests provide biodiversity, ecosystem, and economic services. Information on individual trees is important for understanding forest ecosystems but obtaining individual-level data at broad scales is challenging due to the costs and logistics of data collection. While advances in remote sensing techniques allow surveys of individual trees at unprecedented extents, there remain technical challenges in turning sensor data into tangible information. Using deep learning methods, we produced an open-source data set of individual-level crown estimates for 100 million trees at 37 sites across the United States surveyed by the National Ecological Observatory Network’s Airborne Observation Platform. Each canopy tree crown is represented by a rectangular bounding box and includes information on the height, crown area, and spatial location of the tree. These data have the potential to drive significant expansion of individual-level research on trees by facilitating both regional analyses and cross-region comparisons encompassing forest types from most of the United States. 
    more » « less
  3. Abstract Measuring forest biodiversity using terrestrial surveys is expensive and can only capture common species abundance in large heterogeneous landscapes. In contrast, combining airborne imagery with computer vision can generate individual tree data at the scales of hundreds of thousands of trees. To train computer vision models, ground‐based species labels are combined with airborne reflectance data. Due to the difficulty of finding rare species in a large landscape, many classification models only include the most abundant species, leading to biased predictions at broad scales. For example, if only common species are used to train the model, this assumes that these samples are representative across the entire landscape. Extending classification models to include rare species requires targeted data collection and algorithmic improvements to overcome large data imbalances between dominant and rare taxa. We use a targeted sampling workflow to the Ordway Swisher Biological Station within the US National Ecological Observatory Network (NEON), where traditional forestry plots had identified six canopy tree species with more than 10 individuals at the site. Combining iterative model development with rare species sampling, we extend a training dataset to include 14 species. Using a multi‐temporal hierarchical model, we demonstrate the ability to include species predicted at <1% frequency in landscape without losing performance on the dominant species. The final model has over 75% accuracy for 14 species with improved rare species classification compared to 61% accuracy of a baseline deep learning model. After filtering out dead trees, we generate landscape species maps of individual crowns for over 670 000 individual trees. We find distinct patches of forest composed of rarer species at the full‐site scale, highlighting the importance of capturing species diversity in training data. We estimate the relative abundance of 14 species within the landscape and provide three measures of uncertainty to generate a range of counts for each species. For example, we estimate that the dominant species,Pinus palustrisaccounts for c. 28% of predicted stems, with models predicting a range of counts between 160 000 and 210 000 individuals. These maps provide the first estimates of canopy tree diversity within a NEON site to include rare species and provide a blueprint for capturing tree diversity using airborne computer vision at broad scales. 
    more » « less
  4. The ability to automatically delineate individual tree crowns using remote sensing data opens the possibility to collect detailed tree information over large geographic regions. While individual tree crown delineation (ITCD) methods have proven successful in conifer-dominated forests using Light Detection and Ranging (LiDAR) data, it remains unclear how well these methods can be applied in deciduous broadleaf-dominated forests. We applied five automated LiDAR-based ITCD methods across fifteen plots ranging from conifer- to broadleaf-dominated forest stands at Harvard Forest in Petersham, MA, USA, and assessed accuracy against manual delineation of crowns from unmanned aerial vehicle (UAV) imagery. We then identified tree- and plot-level factors influencing the success of automated delineation techniques. There was relatively little difference in accuracy between automated crown delineation methods (51–59% aggregated plot accuracy) and, despite parameter tuning, none of the methods produced high accuracy across all plots (27—90% range in plot-level accuracy). The accuracy of all methods was significantly higher with increased plot conifer fraction, and individual conifer trees were identified with higher accuracy (mean 64%) than broadleaf trees (42%) across methods. Further, while tree-level factors (e.g., diameter at breast height, height and crown area) strongly influenced the success of crown delineations, the influence of plot-level factors varied. The most important plot-level factor was species evenness, a metric of relative species abundance that is related to both conifer fraction and the degree to which trees can fill canopy space. As species evenness decreased (e.g., high conifer fraction and less efficient filling of canopy space), the probability of successful delineation increased. Overall, our work suggests that the tested LiDAR-based ITCD methods perform equally well in a mixed temperate forest, but that delineation success is driven by forest characteristics like functional group, tree size, diversity, and crown architecture. While LiDAR-based ITCD methods are well suited for stands with distinct canopy structure, we suggest that future work explore the integration of phenology and spectral characteristics with existing LiDAR as an approach to improve crown delineation in broadleaf-dominated stands. 
    more » « less
  5. Abstract Understanding tree transpiration variability is vital for assessing ecosystem water‐use efficiency and forest health amid climate change, yet most landscape‐level measurements do not differentiate individual trees. Using canopy temperature data from thermal cameras, we estimated the transpiration rates of individual trees at Harvard Forest and Niwot Ridge. PT‐JPL model was used to derive latent heat flux from thermal images at the canopy‐level, showing strong agreement with tower measurements (R2 = 0.70–0.96 at Niwot, 0.59–0.78 at Harvard at half‐hourly to monthly scales) and daily RMSE of 33.5 W/m2(Niwot) and 52.8 W/m2(Harvard). Tree‐level analysis revealed species‐specific responses to drought, with lodgepole pine exhibiting greater tolerance than Engelmann spruce at Niwot and red oak showing heightened resistance than red maple at Harvard. These findings show how ecophysiological differences between species result in varying responses to drought and demonstrate that these responses can be characterized by deriving transpiration from crown temperature measurements. 
    more » « less