ABSTRACT Exosomes, a subset of extracellular vesicles (EVs) ranging in size from 30 to 150 nm, are of significant interest for biomedical applications such as diagnostic testing and therapeutics delivery. Biofluids, including urine, blood, and saliva, contain exosomes that carry biomarkers reflective of their host cells. However, isolation of EVs is often a challenge due to their size range, low density, and high hydrophobicity. Isolations can involve long separation times (ultracentrifugation) or result in impure eluates (size exclusion chromatography, polymer‐based precipitation). As an alternative to these methods, this study evaluates the first use of nylon‐6 capillary‐channeled polymer (C‐CP) fiber columns to separate EVs from human urine via a step‐gradient hydrophobic interaction chromatography method. Different from previous efforts using polyester fiber columns for EV separations, nylon‐6 shows potential for increased isolation efficiency, including somewhat higher column loading capacity and more gentle EV elution solvent strength. The efficacy of this approach to EV separation has been determined by scanning electron and transmission microscopy, nanoparticle flow cytometry (NanoFCM), and Bradford protein assays. Electron microscopy showed isolated vesicles of the expected morphology. Nanoparticle flow cytometry determined particle densities of eluates yielding up to 5 × 108particles mL−1, a typical distribution of vesicle sizes in the eluate (60–100 nm), and immunoconfirmation using fluorescent anti‐CD81 antibodies. Bradford assays confirmed that protein concentrations in the EV eluate were significantly reduced (approx. sevenfold) from raw urine. Overall, this approach provides a low‐cost and time‐efficient (< 20 min) column separation to yield urinary EVs of the high purities required for downstream applications, including diagnostic testing and therapeutics.
more »
« less
Electroformed Inverse‐Opal Nanostructures for Surface‐Marker‐Specific Isolation of Extracellular Vesicles Directly from Complex Media
Abstract Extracellular vesicles (EVs) – nanoscale membranous particles that carry multiple proteins and nucleic acid cargoes from their mother cells of origin into circulation – have enormous potential as biomarkers. However, devices appropriately scaled to the nanoscale to match the size of EVs (30–200 nm) have orders of magnitude too low throughput to process clinical samples (1012EVs mL−1in serum). To address this challenge, we develop a novel approach that incorporates billions of nanomagnetic sorters that act in parallel to precisely isolate sparse EVs based on immunomagnetic labeling directly from clinical samples at flow rates billions of times greater than that of a single nanofluidic device. To fabricate these chips, the ferromagnetic metals are electro‐deposited into a self‐assembled microlattice, achieving >109nanoscale magnetophoretic sorting devices in a 3D postage stamp‐sized lattice with >70x magnetic traps and >20x enrichment of magnetic nanoparticles versus our previous work. The immunomagnetically labeled EVs are isolated and achieve a ≈100% increase in yield as well as increased purity compared to conventional methods. Building on the proof‐of‐concept demonstrations in this manuscript, this new approach has the potential to enhance the future clinical translation of EV biomarkers by enabling rapid, sensitive, and specific isolation of EV subpopulations from clinical samples.
more »
« less
- Award ID(s):
- 2344714
- PAR ID:
- 10419155
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Materials Technologies
- Volume:
- 8
- Issue:
- 9
- ISSN:
- 2365-709X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The significant roles of extracellular vesicles (EVs) as intracellular mediators, disease biomarkers, and therapeutic agents, make them a scientific hotspot. In particular, EVs secreted by human stem cells show significance in treating neurological disorders, such as Alzheimer’s disease and ischemic stroke. However, the clinical applications of EVs are limited due to their poor targeting capabilities and low therapeutic efficacies after intravenous administration. Superparamagnetic iron oxide (SPIO) nanoparticles are biocompatible and have been shown to improve the targeting ability of EVs. In particular, ultrasmall SPIO (USPIO, <50 nm) are more suitable for labeling nanoscale EVs due to their small size. In this study, induced forebrain neural progenitor cortical organoids (iNPCo) were differentiated from human induced pluripotent stem cells (iPSCs), and the iNPCo expressed FOXG1, Nkx2.1, α-catenin, as well as β-tubulin III. EVs were isolated from iNPCo media, then loaded with USPIOs by sonication. Size and concentration of EV particles were measured by nanoparticle tracking analysis, and no significant changes were observed in size distribution before and after sonication, but the concentration decreased after labeling. miR-21 and miR-133b decreased after sonication. Magnetic resonance imaging (MRI) demonstrated contrast visualized for the USPIO labeled EVs embedded in agarose gel phantoms. Upon calculation, USPIO labeled EVs exhibited considerably shorter relaxation times, quantified as T2 and T2* values, reducing the signal intensity and generating higher MRI contrast compared to unlabeled EVs and gel only. Our study demonstrated that USPIO labeling was a feasible approach for in vitro tracking of brain organoid-derived EVs, which paves the way for further in vivo examination.more » « less
-
Abstract Extracellular vesicles (EVs) have been identified as promising biomarkers for the noninvasive diagnosis of various diseases. However, challenges in separating EVs from soluble proteins have resulted in variable EV recovery rates and low purities. Here, we report a high-yield ( > 90%) and rapid ( < 10 min) EV isolation method calledFLocculation viaOrbitalAcousticTrapping (FLOAT). The FLOAT approach utilizes an acoustofluidic droplet centrifuge to rotate and controllably heat liquid droplets. By adding a thermoresponsive polymer flocculant, nanoparticles as small as 20 nm can be rapidly and selectively concentrated at the center of the droplet. We demonstrate the ability of FLOAT to separate urinary EVs from the highly abundant Tamm-Horsfall protein, addressing a significant obstacle in the development of EV-based liquid biopsies. Due to its high-yield nature, FLOAT reduces biofluid starting volume requirements by a factor of 100 (from 20 mL to 200 µL), demonstrating its promising potential in point-of-care diagnostics.more » « less
-
Abstract Extracellular vesicles (EVs) are implicated as promising therapeutics and drug delivery vehicles in various diseases. However, successful clinical translation will depend on the development of scalable biomanufacturing approaches, especially due to the documented low levels of intrinsic EV‐associated cargo that may necessitate repeated doses to achieve clinical benefit in certain applications. Thus, here the effects of a 3D‐printed scaffold‐perfusion bioreactor system are assessed on the production and bioactivity of EVs secreted from bone marrow‐derived mesenchymal stem cells (MSCs), a cell type widely implicated in generating EVs with therapeutic potential. The results indicate that perfusion bioreactor culture induces an ≈40‐80‐fold increase (depending on measurement method) in MSC EV production compared to conventional cell culture. Additionally, MSC EVs generated using the perfusion bioreactor system significantly improve wound healing in a diabetic mouse model, with increased CD31+staining in wound bed tissue compared to animals treated with flask cell culture‐generated MSC EVs. Overall, this study establishes a promising solution to a major EV translational bottleneck, with the capacity for tunability for specific applications and general improvement alongside advancements in 3D‐printing technologies.more » « less
-
Abstract Extracellular vesicles (EVs) play important roles in cell-cell communication but they are highly heterogeneous, and each vesicle has dimensions smaller than 200 nm thus encapsulates very limited amounts of cargos. We report the technique of NanOstirBar (NOB)-EnabLed Single Particle Analysis (NOBEL-SPA) that utilizes NOBs, which are superparamagnetic nanorods easily handled by a magnet or a rotating magnetic field, to act as isolated “islands” for EV immobilization and cargo confinement. NOBEL-SPA permits rapid inspection of single EV with high confidence by confocal fluorescence microscopy, and can assess the colocalization of selected protein/microRNA (miRNA) pairs in the EVs produced by various cell lines or present in clinical sera samples. Specific EV sub-populations marked by the colocalization of unique protein and miRNA combinations have been revealed by the present work, which can differentiate the EVs by their cells or origin, as well as to detect early-stage breast cancer (BC). We believe NOBEL-SPA can be expanded to analyze the co-localization of other types of cargo molecules, and will be a powerful tool to study EV cargo loading and functions under different physiological conditions, and help discover distinct EV subgroups valuable in clinical examination and therapeutics development.more » « less
An official website of the United States government
