Abstract Dispersing inorganic colloidal nanoparticles within nematic liquid crystals provides a versatile platform both for forming new soft matter phases and for predefining physical behavior through mesoscale molecular‐colloidal self‐organization. However, owing to formation of particle‐induced singular defects and complex elasticity‐mediated interactions, this approach has been implemented mainly just for colloidal nanorods and nanoplatelets, limiting its potential technological utility. Here, orientationally ordered nematic colloidal dispersions are reported of pentagonal gold bipyramids that exhibit narrow but controlled polarization‐dependent surface plasmon resonance spectra and facile electric switching. Bipyramids tend to orient with their C5rotation symmetry axes along the nematic director, exhibiting spatially homogeneous density within aligned samples. Topological solitons, like heliknotons, allow for spatial reorganization of these nanoparticles according to elastic free energy density within their micrometer‐scale structures. With the nanoparticle orientations slaved to the nematic director and being switched by low voltages ≈1 V within a fraction of a second, these plasmonic composite materials are of interest for technological uses like color filters and plasmonic polarizers, as well as may lead to the development of unusual nematic phases, like pentatic liquid crystals.
more »
« less
Nucleotide‐Driven Molecular Sensing of Monkeypox Virus Through Hierarchical Self‐Assembly of 2D Hafnium Disulfide Nanoplatelets and Gold Nanospheres
Abstract Liquid interfaces facilitate the organization of nanometer‐scale biomaterials with plasmonic properties suitable for molecular diagnostics. Using hierarchical assemblage of 2D hafnium disulfide nanoplatelets and zero‐dimensional spherical gold nanoparticles, the design of a multifunctional material is reported. When the target analyte is present, the nanocomposites’ self‐assembling pattern changes, altering their plasmonic response. Using monkeypox virus (MPXV) as an example, the findings reveal that adding genomic DNA to the nanocomposite surface increases the agglomeration between gold nanoparticles and decreases the π‐stacking distance between hafnium disulfide nanoplatelets. Further, this self‐assembled nanomaterial is found to have minimal cross‐reactivity toward other pathogens and a limit of detection of 7.6 pg µL−1(i.e., 3.57 × 104copies µL−1) toward MPXV. Overall, this study helped to gain a better understanding of the genomic organization of MPXV to chemically design and develop targeted nucleotides. The study has been validated by UV–vis spectroscopy, X‐ray diffraction, scanning transmission electron microscopy, surface‐enhanced Raman microscopy and electromagnetic simulation studies. To the best knowledge, this is the first study in literature reporting selective molecular detection of MPXV within a few minutes and without the use of any high‐end instrumental techniques like polymerase chain reactions.
more »
« less
- Award ID(s):
- 2045640
- PAR ID:
- 10419170
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Functional Materials
- Volume:
- 33
- Issue:
- 19
- ISSN:
- 1616-301X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The performance of surface‐enhanced Raman spectroscopy (SERS) is determined by the interaction between highly diluted analytes and boosted localized electromagnetic fields in nanovolumes. Although superhydrophobic surfaces are developed for analyte enrichment, i.e., to concentrate and transfer analytes toward a specific position, it is still challenging to realize reproducible, uniform, and sensitive superhydrophobic SERS substrates over large scales, representing a major barrier for practical sensing applications. To overcome this challenge, a superhydrophobic SERS chip that combines 3D‐assembled gold nanoparticles on nanoporous substrates is proposed, for a strong localized field, with superhydrophobic surface treatment for analyte enrichment. Intriguingly, by concentrating droplets in the volume of 40 µL, the sensitivity of 1 nmis demonstrated using 1,2‐bis(4‐pyridyl)‐ethylene molecules. In addition, this unique chip demonstrates a relative standard deviation (RSD) of 2.2% in chip‐to‐chip reproducibility for detection of fentanyl at 1 µg mL–1concentration, revealing its potential for quantitative sensing of chemicals and drugs. Furthermore, the trace analysis of fentanyl and fentanyl‐heroin mixture in human saliva is realized after a simple pretreatment process. This superhydrophobic chip paves the way toward on‐site and real‐time drug sensing to tackle many societal issues like drug abuse and the opioid crisis.more » « less
-
Assessing Plasmonic Nanoprobes in Electromagnetic Field Enhancement for SERS Detection of BiomarkersThe exploration of the plasmonic field enhancement of nanoprobes consisting of gold and magnetic core@gold shell nanoparticles has found increasing application for the development of surface-enhanced Raman spectroscopy (SERS)-based biosensors. The understanding of factors controlling the electromagnetic field enhancement, as a result of the plasmonic field enhancement of the nanoprobes in SERS biosensing applications, is critical for the design and preparation of the optimal nanoprobes. This report describes findings from theoretical calculations of the electromagnetic field intensity of dimer models of gold and magnetic core@gold shell nanoparticles in immunoassay SERS detection of biomarkers. The electromagnetic field intensities for a series of dimeric nanoprobes with antibody–antigen–antibody binding defined interparticle distances were examined in terms of nanoparticle sizes, core–shell sizes, and interparticle spacing. The results reveal that the electromagnetic field enhancement not only depended on the nanoparticle size and the relative core size and shell thicknesses of the magnetic core@shell nanoparticles but also strongly on the interparticle spacing. Some of the dependencies are also compared with experimental data from SERS detection of selected cancer biomarkers, showing good agreement. The findings have implications for the design and optimization of functional nanoprobes for SERS-based biosensors.more » « less
-
We employ photothermally driven self-assembly of colloidal particles to design microscopic structures with programmable size and tunable order. The experimental system is based on a binary mixture of “plasmonic heater” gold nanoparticles and “assembly building block” microparticles. Photothermal heating of the gold nanoparticles under visible light causes a natural convection flow that efficiently assembles the microscale building block particles (diameter 1–10 μm) into a monolayer. We identify the onset of active Brownian motion of colloidal particles under this convective flow by varying the conditions of light intensity, gold nanoparticle concentration, and sample height. We realize a crowded assembly of microparticles around the center of illumination and show that the size of the particle crowd can be programmed using patterned light illumination. In a binary mixture of gold nanoparticles and polystyrene microparticles, we demonstrate the formation of rapid and large-scale crystalline monolayers, covering an area of 0.88 mm2 within 10 min. We find that the structural order of the assembly can be tuned by varying the surface charge of the nanoparticles and the size of the microparticles, giving rise to the formation of different phases–colloidal crystals, crowds, and gels. Using Monte Carlo simulations, we explain how the phases emerge from the interplay between hydrodynamic and electrostatic interactions, as well as the assembly kinetics. Our study demonstrates the promise of self-assembly with programmable shapes and structural order under nonequilibrium conditions using an accessible setup comprising only binary mixtures and LED light.more » « less
-
Recent advances in the determination of crystal structures and studies of optical properties of gold nanoclusters in the size range from tens to hundreds of gold atoms have started to reveal the grand evolution from gold complexes to nanoclusters and further to plasmonic nanoparticles. However, a detailed comparison of their photophysical properties is still lacking. Here, we compared the excited state behaviors of gold complexes, nanolcusters, and plasmonic nanoparticles, as well as small organic molecules by choosing four typical examples including the Au10 complex, Au25 nanocluster (1 nm metal core), 13 diameter Au nanoparticles, and Rhodamine B. To compare their photophysical behaviors, we performed steady-state absorption, photoluminescence, and femtosecond transient absorption spectroscopic measurements. It was found that gold nanoclusters behave somewhat like small molecules, showing both rapid internal conversion (<1 ps) and long-lived excited state lifetime (about 100 ns). Unlike the nanocluster form in which metal–metal transitions dominate, gold complexes showed significant charge transfer between metal atoms and surface ligands. Plasmonic gold nanoparticles, on the other hand, had electrons being heated and cooled (~100 ps time scale) after photo-excitation, and the relaxation was dominated by electron–electron scattering, electron–phonon coupling, and energy dissipation. In both nanoclusters and plasmonic nanoparticles, one can observe coherent oscillations of the metal core, but with different fundamental origins. Overall, this work provides some benchmarking features for organic dye molecules, organometallic complexes, metal nanoclusters, and plasmonic nanoparticles.more » « less
An official website of the United States government
