Abstract The superconducting transmon qubit is a leading platform for quantum computing and quantum science. Building large, useful quantum systems based on transmon qubits will require significant improvements in qubit relaxation and coherence times, which are orders of magnitude shorter than limits imposed by bulk properties of the constituent materials. This indicates that relaxation likely originates from uncontrolled surfaces, interfaces, and contaminants. Previous efforts to improve qubit lifetimes have focused primarily on designs that minimize contributions from surfaces. However, significant improvements in the lifetime of two-dimensional transmon qubits have remained elusive for several years. Here, we fabricate two-dimensional transmon qubits that have both lifetimes and coherence times with dynamical decoupling exceeding 0.3 milliseconds by replacing niobium with tantalum in the device. We have observed increased lifetimes for seventeen devices, indicating that these material improvements are robust, paving the way for higher gate fidelities in multi-qubit processors. 
                        more » 
                        « less   
                    
                            
                            Chemical Profiles of the Oxides on Tantalum in State of the Art Superconducting Circuits
                        
                    
    
            Abstract Over the past decades, superconducting qubits have emerged as one of the leading hardware platforms for realizing a quantum processor. Consequently, researchers have made significant effort to understand the loss channels that limit the coherence times of superconducting qubits. A major source of loss has been attributed to two level systems that are present at the material interfaces. It is recently shown that replacing the metal in the capacitor of a transmon with tantalum yields record relaxation and coherence times for superconducting qubits, motivating a detailed study of the tantalum surface. In this work, the chemical profile of the surface of tantalum films grown on c‐plane sapphire using variable energy X‐ray photoelectron spectroscopy (VEXPS) is studied. The different oxidation states of tantalum that are present in the native oxide resulting from exposure to air are identified, and their distribution through the depth of the film is measured. Furthermore, it is shown how the volume and depth distribution of these tantalum oxidation states can be altered by various chemical treatments. Correlating these measurements with detailed measurements of quantum devices may elucidate the underlying microscopic sources of loss. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1839199
- PAR ID:
- 10419198
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Science
- Volume:
- 10
- Issue:
- 21
- ISSN:
- 2198-3844
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            High-coherence qubits, which can store and manipulate quantum states for long times with low error rates, are necessary building blocks for quantum computers. Here we propose a driven superconducting erasure qubit, the Floquet fluxonium molecule, which minimizes bit-flip rates through disjoint support of its qubit states and suppresses phase flips by a novel second-order insensitivity to flux-noise dephasing. We estimate the bit-flip, phase-flip, and erasure rates through numerical simulations, with predicted coherence times of approximately 50 ms in the computational subspace and erasure lifetimes of about . We also present a protocol for performing high-fidelity single-qubit rotation gates via additional flux modulation, on timescales of roughly 500 ns, and propose a scheme for erasure detection and logical readout. Our results demonstrate the utility of drives for building new qubits that can outperform their static counterparts. Published by the American Physical Society2024more » « less
- 
            Abstract The generation of a register of highly coherent, but independent, qubits is a prerequisite to performing universal quantum computation. Here we introduce a qubit encoded in two nuclear spin states of a single 87 Sr atom and demonstrate coherence approaching the minute-scale within an assembled register of individually-controlled qubits. While other systems have shown impressive coherence times through some combination of shielding, careful trapping, global operations, and dynamical decoupling, we achieve comparable coherence times while individually driving multiple qubits in parallel. We highlight that even with simultaneous manipulation of multiple qubits within the register, we observe coherence in excess of 10 5 times the current length of the operations, with $${T}_{2}^{{{{{\mathrm{echo}}}}}}=\left(40\pm 7\right)$$ T 2 echo = 40 ± 7 seconds. We anticipate that nuclear spin qubits will combine readily with the technical advances that have led to larger arrays of individually trapped neutral atoms and high-fidelity entangling operations, thus accelerating the realization of intermediate-scale quantum information processors.more » « less
- 
            Optically trapped neutral atoms are one of several leading approaches for scalable quantum information processing. When prepared in electronic ground states in deep optical lattices atomic qubits are weakly interacting with long coherence times. Excitation to Rydberg states turns on strong interactions which enable fast gates and entanglement generation. I will present quantum logic experiments with a 2D array of blue detuned lines that traps more than 100 Cesium atom qubits. The array is randomly loaded from a MOT and an optical tweezer steered by a 2D acousto-optic deflector is used to ll subregions of the array. Progress towards high fidelity entangling gates based on Rydberg excitation lasers with lower noise, and optimized optical polarization and magnetic eld settings will be shown.more » « less
- 
            Abstract Protocols for designing and manipulating qubits with ultracold alkali atoms in 3D optical lattices are introduced. These qubits are formed from two‐atom spin superposition states that create a decoherence‐free subspace immune to stray magnetic fields, dramatically improving coherence times while still enjoying the single‐site addressability and Feshbach resonance control of state‐of‐the‐art alkali atom systems. The protocol requires no continuous driving or spin‐dependent potentials, and instead relies upon the population of a higher motional band to realize naturally tunable in‐site exchange and cross‐site superexchange interactions. As a proof‐of‐principle example of their utility for entanglement generation for quantum computation, it is shown that the cross‐site superexchange interactions can be used to engineer 1D cluster states. Explicit protocols for experimental preparation and manipulation of the qubits are also discussed, as well as methods for measuring more complex quantities such as out‐of‐time‐ordered correlation functions (OTOCs).more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
