skip to main content


Title: Assembly and coherent control of a register of nuclear spin qubits
Abstract The generation of a register of highly coherent, but independent, qubits is a prerequisite to performing universal quantum computation. Here we introduce a qubit encoded in two nuclear spin states of a single 87 Sr atom and demonstrate coherence approaching the minute-scale within an assembled register of individually-controlled qubits. While other systems have shown impressive coherence times through some combination of shielding, careful trapping, global operations, and dynamical decoupling, we achieve comparable coherence times while individually driving multiple qubits in parallel. We highlight that even with simultaneous manipulation of multiple qubits within the register, we observe coherence in excess of 10 5 times the current length of the operations, with $${T}_{2}^{{{{{\mathrm{echo}}}}}}=\left(40\pm 7\right)$$ T 2 echo = 40 ± 7 seconds. We anticipate that nuclear spin qubits will combine readily with the technical advances that have led to larger arrays of individually trapped neutral atoms and high-fidelity entangling operations, thus accelerating the realization of intermediate-scale quantum information processors.  more » « less
Award ID(s):
1951188
NSF-PAR ID:
10336636
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; « less
Date Published:
Journal Name:
Nature Communications
Volume:
13
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Color centers in solids, such as the nitrogen-vacancy center in diamond, offer well-protected and well-controlled localized electron spins that can be employed in various quantum technologies. Moreover, the long coherence time of the surrounding spinful nuclei can enable a robust quantum register controlled through the color center. We design pulse sequence protocols that drive the electron spin to generate robust entangling gates with these nuclear memory qubits. We find that compared to using Carr-Purcell-Meiboom-Gill (CPMG) alone, Uhrig decoupling sequence and hybrid protocols composed of CPMG and Uhrig sequences improve these entangling gates in terms of fidelity, spin control range, and spin selectivity. We provide analytical expressions for the sequence protocols and also show numerically the efficacy of our method on nitrogen-vacancy centers in diamond. Our results are broadly applicable to color centers weakly coupled to a small number of nuclear spin qubits.

     
    more » « less
  2. Color centers in solids, such as the nitrogen-vacancy center in diamond, offer well-protected and well-controlled localized electron spins that can be employed in various quantum technologies. Moreover, the long coherence time of the surrounding spinful nuclei can enable a robust quantum register controlled through the color center.We design pulse sequence protocols that drive the electron spin to generate robust entangling gates with these nuclear memory qubits.We find that compared to using Carr-Purcell-Meiboom-Gill (CPMG) alone, Uhrig decoupling sequence and hybrid protocols composed of CPMG and Uhrig sequences improve these entangling gates in terms of fidelity, spin control range, and spin selectivity. We provide analytical expressions for the sequence protocols and also show numerically the efficacy of our method on nitrogen-vacancy centers in diamond. Our results are broadly applicable to color centers weakly coupled to a small number of nuclear spin qubits. 
    more » « less
  3. Abstract

    Atomic systems, ranging from trapped ions to ultracold and Rydberg atoms, offer unprecedented control over both internal and external degrees of freedom at the single‐particle level. They are considered among the foremost candidates for realizing quantum simulation and computation platforms that can outperform classical computers at specific tasks. In this work, a realistic experimental toolbox for quantum information processing with neutral alkaline‐earth‐like atoms in optical tweezer arrays is described. In particular, a comprehensive and scalable architecture based on a programmable array of alkaline‐earth‐like atoms is proposed, exploiting their electronic clock states as a precise and robust auxiliary degree of freedom, and thus allowing for efficient all‐optical one‐ and two‐qubit operations between nuclear spin qubits. The proposed platform promises excellent performance thanks to high‐fidelity register initialization, rapid spin‐exchange gates, and error detection in read‐out. As a benchmark and application example, the expected fidelity of an increasing number of subsequent SWAP gates for optimal parameters is computed, which can be used to distribute entanglement between remote atoms within the array.

     
    more » « less
  4. Quantum systems have the potential to demonstrate significant computational advantage, but current quantum devices suffer from the rapid accumulation of error that prevents the storage of quantum information over extended periods. The unintentional coupling of qubits to their environment and each other adds significant noise to computation, and improved methods to combat decoherence are required to boost the performance of quantum algorithms on real machines. While many existing techniques for mitigating error rely on adding extra gates to the circuit [ 13 , 20 , 56 ], calibrating new gates [ 50 ], or extending a circuit’s runtime [ 32 ], this article’s primary contribution leverages the gates already present in a quantum program without extending circuit duration. We exploit circuit slack for single-qubit gates that occur in idle windows, scheduling the gates such that their timing can counteract some errors. Spin-echo corrections that mitigate decoherence on idling qubits act as inspiration for this work. Theoretical models, however, fail to capture all sources of noise in Noisy Intermediate Scale Quantum devices, making practical solutions necessary that better minimize the impact of unpredictable errors in quantum machines. This article presents TimeStitch: a novel framework that pinpoints the optimum execution schedules for single-qubit gates within quantum circuits. TimeStitch, implemented as a compilation pass, leverages the reversible nature of quantum computation to boost the success of circuits on real quantum machines. Unlike past approaches that apply reversibility properties to improve quantum circuit execution [ 35 ], TimeStitch amplifies fidelity without violating critical path frontiers in either the slack tuning procedures or the final rescheduled circuit. On average, compared to a state-of-the-art baseline, a practically constrained TimeStitch achieves a mean 38% relative improvement in success rates, with a maximum of 106%, while observing bounds on circuit depth. When unconstrained by depth criteria, TimeStitch produces a mean relative fidelity increase of 50% with a maximum of 256%. Finally, when TimeStitch intelligently leverages periodic dynamical decoupling within its scheduling framework, a mean 64% improvement is observed over the baseline, relatively outperforming stand-alone dynamical decoupling by 19%, with a maximum of 287%. 
    more » « less
  5. Abstract 167 Er 3+ doped solids are a promising platform for quantum technology due to erbium’s telecom C-band optical transition and its long hyperfine coherence times. We experimentally study the spin Hamiltonian and dynamics of 167 Er 3+ spins in Y 2 O 3 using electron paramagnetic resonance (EPR) spectroscopy. The anisotropic electron Zeeman, hyperfine and nuclear quadrupole matrices are fitted using data obtained by X-band (9.5 GHz) EPR spectroscopy. We perform pulsed EPR spectroscopy to measure spin relaxation time T 1 and coherence time T 2 for the 3 principal axes of an anisotropic g tensor. Long electronic spin coherence time up to 24.4 μ s is measured for lowest g transition at 4 K, exceeding previously reported values at much lower temperatures. Measurements of decoherence mechanism indicates T 2 limited by spectral diffusion and instantaneous diffusion. Long spin coherence times, along with a strong anisotropic hyperfine interaction makes 167 Er 3+ :Y 2 O 3 a rich system and an excellent candidate for spin-based quantum technologies. 
    more » « less