Periodic networks on the verge of mechanical instability, called Maxwell lattices, are known to exhibit zero-frequency modes localized to their boundaries. Topologically polarized Maxwell lattices, in particular, focus these zero modes to one of their boundaries in a manner that is protected against disorder by the reciprocal-space topology of the lattice’s band structure. Here, we introduce a class of mechanical bilayers as a model system for designing topologically protected edge modes that couple in-plane dilational and shearing modes to out-of-plane flexural modes, a paradigm that we refer to as “omnimodal polarization.” While these structures exhibit a high-dimensional design space that makes it difficult to predict the topological polarization of generic geometries, we are able to identify a family of mirror-symmetric bilayers that inherit the in-plane modal localization of their constitutive monolayers, whose topological polarization can be determined analytically. Importantly, the coupling between the layers results in the emergence of omnimodal polarization, whereby in-plane and out-of-plane edge modes localize on the same edge. We demonstrate these theoretical results by fabricating a mirror-symmetric, topologically polarized kagome bilayer consisting of a network of elastic beams via additive manufacturing and confirm this finite-frequency polarization via finite element analysis and laser-vibrometry experiments.
more »
« less
Soft Mechanical Metamaterials with Transformable Topology Protected by Stress Caching
Abstract Maxwell lattices possess distinct topological states that feature mechanically polarized edge behaviors and asymmetric dynamic responses protected by the topology of their phonon bands. Until now, demonstrations of non‐trivial topological behaviors from Maxwell lattices have been limited to fixed configurations or have achieved reconfigurability using mechanical linkages. Here, a monolithic transformable topological mechanical metamaterial is introduced in the form of a generalized kagome lattice made from a shape memory polymer (SMP). It is capable of reversibly exploring topologically distinct phases of the non‐trivial phase space via a kinematic strategy that converts sparse mechanical inputs at free edge pairs into a biaxial, global transformation that switches its topological state. All configurations are stable in the absence of confinement or a continuous mechanical input. Its topologically‐protected, polarized mechanical edge stiffness is robust against broken hinges or conformational defects. More importantly, it shows that the phase transition of SMPs that modulate chain mobility, can effectively shield a dynamic metamaterial's topological response from its own kinematic stress history, referred to as “stress caching”. This work provides a blueprint for monolithic transformable mechanical metamaterials with topological mechanical behavior that is robust against defects and disorder while circumventing their vulnerability to stored elastic energy, which will find applications in switchable acoustic diodes and tunable vibration dampers or isolators.
more »
« less
- Award ID(s):
- 1741618
- PAR ID:
- 10419234
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Science
- Volume:
- 10
- Issue:
- 22
- ISSN:
- 2198-3844
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Topological phases feature robust edge states that are protected against the effects of defects and disorder. These phases have largely been studied in conservatively coupled systems, in which non-trivial topological invariants arise in the energy or frequency bands of a system. Here we show that, in dissipatively coupled systems, non-trivial topological invariants can emerge purely in a system’s dissipation. Using a highly scalable and easily reconfigurable time-multiplexed photonic resonator network, we experimentally demonstrate one- and two-dimensional lattices that host robust topological edge states with isolated dissipation rates, measure a dissipation spectrum that possesses a non-trivial topological invariant, and demonst rate topological protection of the network’s quality factor. The topologically non-trivial dissipation of our system exposes new opportunities to engineer dissipation in both classical and quantum systems. Moreover, our experimental platform’s straightforward scaling to higher dimensions and its ability to implement inhomogeneous, non-reciprocal and long range couplings may enable future work in the study of synthetic dimensions.more » « less
-
Recent advances in topological mechanics have revealed unusual phenomena such as topologically protected floppy modes and states of self-stress that are exponentially localized at boundaries and interfaces of mechanical networks. In this paper, we explore the topological mechanics of epithelial tissues, where the appearance of these boundary and interface modes could lead to localized soft or stressed spots and play a role in morphogenesis. We consider both a simple vertex model (VM) governed by an effective elastic energy and its generalization to an active tension network (ATN) which incorporates active adaptation of the cytoskeleton. By analyzing spatially periodic lattices at the Maxwell point of mechanical instability, we find topologically polarized phases with exponential localization of floppy modes and states of self-stress in the ATN when cells are allowed to become concave, but not in the VM.more » « less
-
In the past decade, the field of topological photonics has gained prominence exhibiting consequential effects in quantum information science, lasing, and large-scale integrated photonics. Many of these topological systems exhibit protected states, enabling robust travel along their edges without being affected by defects or disorder. Nonetheless, conventional topological structures often lack the flexibility for implementing different topological models and for tunability post fabrication. Here, we present a method to implement magnetic-like Hamiltonians supporting topologically protected edge modes on a general-purpose programmable silicon photonic mesh of interferometers. By reconfiguring the lattice onto a two-dimensional mesh of ring resonators with carefully tuned couplings, we show robust edge state transport even in the presence of manufacturing tolerance defects. We showcase the system’s reconfigurability by demonstrating topological insulator lattices of different sizes and shapes and introduce edge and bulk defects to underscore the robustness of the photonic edge states. Our study paves the way for the implementation of photonic topological insulators on general-purpose programmable photonics platforms.more » « less
-
null (Ed.)Abstract Topological insulator lasers (TILs) are a recently introduced family of lasing arrays in which phase locking is achieved through synthetic gauge fields. These single frequency light source arrays operate in the spatially extended edge modes of topologically non-trivial optical lattices. Because of the inherent robustness of topological modes against perturbations and defects, such topological insulator lasers tend to demonstrate higher slope efficiencies as compared to their topologically trivial counterparts. So far, magnetic and non-magnetic optically pumped topological laser arrays as well as electrically pumped TILs that are operating at cryogenic temperatures have been demonstrated. Here we present the first room temperature and electrically pumped topological insulator laser. This laser array, using a structure that mimics the quantum spin Hall effect for photons, generates light at telecom wavelengths and exhibits single frequency emission. Our work is expected to lead to further developments in laser science and technology, while opening up new possibilities in topological photonics.more » « less
An official website of the United States government
