skip to main content


Title: Room temperature electrically pumped topological insulator lasers
Abstract Topological insulator lasers (TILs) are a recently introduced family of lasing arrays in which phase locking is achieved through synthetic gauge fields. These single frequency light source arrays operate in the spatially extended edge modes of topologically non-trivial optical lattices. Because of the inherent robustness of topological modes against perturbations and defects, such topological insulator lasers tend to demonstrate higher slope efficiencies as compared to their topologically trivial counterparts. So far, magnetic and non-magnetic optically pumped topological laser arrays as well as electrically pumped TILs that are operating at cryogenic temperatures have been demonstrated. Here we present the first room temperature and electrically pumped topological insulator laser. This laser array, using a structure that mimics the quantum spin Hall effect for photons, generates light at telecom wavelengths and exhibits single frequency emission. Our work is expected to lead to further developments in laser science and technology, while opening up new possibilities in topological photonics.  more » « less
Award ID(s):
1805200 2011171 2000538 1757025 1454531
NSF-PAR ID:
10298093
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Nature Communications
Volume:
12
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Topological insulators possess protected boundary states which are robust against disorders and have immense implications in both fermionic and bosonic systems. Harnessing these topological effects in nonequilibrium scenarios is highly desirable and has led to the development of topological lasers. The topologically protected boundary states usually lie within the bulk bandgap, and selectively exciting them without inducing instability in the bulk modes of bosonic systems is challenging. Here, we consider topological parametrically driven nonlinear resonator arrays that possess complex eigenvalues only in the edge modes in spite of the uniform pumping. We show parametric oscillation occurs in the topological boundary modes of one and two dimensional systems as well as in the corner modes of a higher order topological insulator system. Furthermore, we demonstrate squeezing dynamics below the oscillation threshold, where the quantum properties of the topological edge modes are robust against certain disorders. Our work sheds light on the dynamics of weakly nonlinear topological systems driven out-of-equilibrium and reveals their intriguing behavior in the quantum regime. 
    more » « less
  2. Nonlinear topological insulators have garnered substantial recent attention as they have both enabled the discovery of new physics due to interparticle interactions, and may have applications in photonic devices such as topological lasers and frequency combs. However, due to the local nature of nonlinearities, previous attempts to classify the topology of nonlinear systems have required significant approximations that must be tailored to individual systems. Here, we develop a general framework for classifying the topology of nonlinear materials in any discrete symmetry class and any physical dimension. Our approach is rooted in a numerical K-theoretic method called the spectral localizer, which leverages a real-space perspective of a system to define local topological markers and a local measure of topological protection. Our nonlinear spectral localizer framework yields a quantitative definition of topologically non-trivial nonlinear modes that are distinguished by the appearance of a topological interface surrounding the mode. Moreover, we show how the nonlinear spectral localizer can be used to understand a system's topological dynamics, i.e., the time-evolution of nonlinearly induced topological domains within a system. We anticipate that this framework will enable the discovery and development of novel topological systems across a broad range of nonlinear materials 
    more » « less
  3. Abstract Large-area lasers are practical for generating high output powers. However, this often comes at the expense of lower beam quality due to the introduction of higher-order modes. Here, we experimentally demonstrate a new type of electrically pumped, large-area edge-emitting lasers that exhibit a high power emission (∼0.4 W) and a high-quality beam (M 2 ∼1.25). These favorable operational characteristics are enabled by establishing a quasi PT-symmetry between the second-order mode of a large area two-mode laser cavity and that of a single-mode auxiliary partner cavity, i.e., by implementing a partial isospectrality between the two coupled cavities. This in turn enlarges the effective volume of the higher-order modes. As a result, a selective pump applied via current injection into the main laser cavity can provide a stronger modal gain to the fundamental mode, and thus lead to lasing in the single mode regime after filtering out higher order transverse modes. The reported experimental results confirm this intuitive picture and are in good agreement with both theoretical and numerical analysis. Above all, the employed material platform and fabrication process are compatible with the industrial standards of semiconductor lasers. This work provides the first clear demonstration, beyond previous proof-of-concept studies, of the utility of PT-symmetry in building laser geometries with enhanced performance and, at the same time, useful output power levels and emission characteristics. 
    more » « less
  4. The development of electrically pumped semiconductor diode lasers emitting at the ultraviolet (UV)-B and -C spectral bands has been an active area of research over the past several years, motivated by a wide range of emerging applications. III-Nitride materials and their alloys, in particular AlGaN, are the material of choice for the development of this ultrashort-wavelength laser technology. Despite significant progress in AlGaN-based light-emitting diodes (LEDs), the technological advancement and innovation in diode lasers at these spectral bands is lagging due to several technical challenges. Here, the authors review the progress of AlGaN electrically-pumped lasers with respect to very recent achievements made by the scientific community. The devices based on both thin films and nanowires demonstrated to date will be discussed in this review. The state-of-the-art growth technologies, such as molecular beam epitaxy (MBE) and metalorganic chemical vapor deposition (MOCVD); and various foreign substrates/templates used for the laser demonstrations will be highlighted. We will also outline technical challenges associated with the laser development, which must be overcome in order to achieve a critical technological breakthrough and fully realize the potential of these lasers. 
    more » « less
  5. Abstract

    Coherent multimode instabilities are responsible for several phenomena of recent interest in semiconductor lasers, such as the generation of frequency combs and ultrashort pulses. These techonologies have proven disruptive in optical telecommunications and spectroscopy applications. While the standard Maxwell-Bloch equations (MBEs) encompass such complex lasing phenomena, their integration is computationally expensive and offers limited analytical insight. In this paper, we demonstrate an efficient spectral approach to the simulation of multimode instabilities via a quantitative analysis of the instability of single-frequency lasing in ring lasers, referred to as the Lorenz-Haken (LH) instability or the RNGH instability in distinct parameter regimes. Our approach, referred to as CFTD, uses generally non-Hermitian Constant Flux modes to obtain projected Time Domain equations. CFTD provides excellent agreement with finite-difference integration of the MBEs across a wide range of parameters in regimes of non-stationary inversion, including frequency comb formation and spatiotemporal chaos. We also develop a modal linear stability analysis using CFTD to efficiently predict multimode instabilities in lasers. The combination of numerical accuracy, speedup, and semi-analytic insight across a variety of dynamical regimes make the CFTD approach ideal to analyze multimode instabilities in lasers, especially in more complex geometries or coupled laser arrays.

     
    more » « less