skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Linguistic Analysis of News Coverage of E-Healthcare in China with a Heterogeneous Graphical Model
E-healthcare has been envisaged as a major component of the infrastructure of modern healthcare, and has been developing rapidly in China. For healthcare, news media can play an important role in raising public interest and utilization of a particular service and complicating (and, perhaps clouding) debate on public health policy issues. We conducted a linguistic analysis of news reports from January 2015 to June 2021 related to E-healthcare in mainland China, using a heterogeneous graphical modeling approach. This approach can simultaneously cluster the datasets and estimate the conditional dependence relationships of keywords. It was found that there were eight phases of media coverage. The focuses and main topics of media coverage were extracted based on the network hub and module detection. The temporal patterns of media reports were found to be mostly consistent with the policy trend. Specifically, in the policy embryonic period (2015–2016), two phases were obtained, industry management was the main topic, and policy and regulation were the focuses of media coverage. In the policy development period (2017–2019), four phases were discovered. All the four main topics, namely industry development, health care, financial market, and industry management, were present. In 2017 Q3–2017 Q4, the major focuses of media coverage included social security, healthcare and reform, and others. In 2018 Q1, industry regulation and finance became the focuses. In the policy outbreak period (2020–), two phases were discovered. Financial market and industry management were the main topics. Medical insurance and healthcare for the elderly became the focuses. This analysis can offer insights into how the media responds to public policy for E-healthcare, which can be valuable for the government, public health practitioners, health care industry investors, and others.  more » « less
Award ID(s):
1916251 2209685
PAR ID:
10419383
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Entropy
Volume:
24
Issue:
11
ISSN:
1099-4300
Page Range / eLocation ID:
1557
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The way media portray public health problems influences the public’s perception of problems and related solutions. Social media allows users to engage with news and to collectively construct meaning. This paper examined news in comparison to user-generated content related to opioids to understand the role of second-level agenda-setting in public health. We analyzed 162,760 tweets about the opioid crisis, and compared the main topics and their sentiments with 2998 opioid stories from The New York Times online. Evidence from this study suggests that second-level agenda setting on social media is different from the news; public communication about opioids on X/Twitter highlights attributes that are different from those highlighted in the news. The findings suggest that public health communication should strategically utilize social media data, including obtaining consumer insight from personal tweets, listening to diverse views and warning signs from issue tweets, and tuning in to the media for policy trends. 
    more » « less
  2. Yang, Yuzhe (Ed.)
    In the face of the unprecedented COVID-19 pandemic, various government-led initiatives and individual actions (e.g., lockdowns, social distancing, and masking) have resulted in diverse pandemic experiences. This study aims to explore these varied experiences to inform more proactive responses for future public health crises. Employing a novel “big-thick” data approach, we analyze and compare key pandemic-related topics that have been disseminatedtothe public through newspapers with those collectedfromthe public via interviews. Specifically, we utilized 82,533 U.S. newspaper articles from January 2020 to December 2021 and supplemented this “big” dataset with “thick” data from interviews and focus groups for topic modeling. Identified key topics were contextualized, compared and visualized at different scales to reveal areas of convergence and divergence. We found seven key topics from the “big” newspaper dataset, providing a macro-level view that covers public health, policies and economics. Conversely, three divergent topics were derived from the “thick” interview data, offering a micro-level view that focuses more on individuals’ experiences, emotions and concerns. A notable finding is the public’s concern about the reliability of news information, suggesting the need for further investigation on the impacts of mass media in shaping the public’s perception and behavior. Overall, by exploring the convergence and divergence in identified topics, our study offers new insights into the complex impacts of the pandemic and enhances our understanding of key issues both disseminated to and resonating with the public, paving the way for further health communication and policy-making. 
    more » « less
  3. Chinese government lifted its “Zero COVID-19” policy in December 2022. The estimated COVDI-19 new cases and deaths after the policy change are 167–279 million (about 12.0% to 20.1% of the Chinese population) and 0.68–2.1 million, respectively. Recent data also revealed continuous drops in fertility rate and historically lowest growth in gross domestic production in China. Thus, balancing COVID-19 control and economic recovery in China is of paramount importance yet very difficult. Supply chain disruption, essential service reduction and shortage of intensive care units have been discussed as the challenges associated with lifting “Zero COVID-19” policy. The additional challenges may include triple epidemic of COVID-19, respiratory syncytial virus and influenza, mental health issues of healthcare providers, care givers and patients, impact on human mobility, lack of robust genomic and epidemiological data and long COVID-19. However, the policy-associated opportunities and other challenges are largely untouched, but warrant attention of and prompt reactions by the policy makers, healthcare providers, public health officials and other stakeholders. The associated benefits are quick reach of herd immunity, boost of economy and businesses activities and increase in social activities. At this moment, we must embrace the policy change, effectively mitigate its associated problems and timely and effectively maximize its associated benefits. 
    more » « less
  4. Article Authors Metrics Comments Media Coverage Peer Review Abstract Introduction Methods Results Discussion Conclusions Supporting information References Reader Comments Figures Abstract Introduction Twitter represents a mainstream news source for the American public, offering a valuable vehicle for learning how citizens make sense of pandemic health threats like Covid-19. Masking as a risk mitigation measure became controversial in the US. The social amplification risk framework offers insight into how a risk event interacts with psychological, social, institutional, and cultural communication processes to shape Covid-19 risk perception. Methods Qualitative content analysis was conducted on 7,024 mask tweets reflecting 6,286 users between January 24 and July 7, 2020, to identify how citizens expressed Covid-19 risk perception over time. Descriptive statistics were computed for (a) proportion of tweets using hyperlinks, (b) mentions, (c) hashtags, (d) questions, and (e) location. Results Six themes emerged regarding how mask tweets amplified and attenuated Covid-19 risk: (a) severity perceptions (18.0%) steadily increased across 5 months; (b) mask effectiveness debates (10.7%) persisted; (c) who is at risk (26.4%) peaked in April and May 2020; (d) mask guidelines (15.6%) peaked April 3, 2020, with federal guidelines; (e) political legitimizing of Covid-19 risk (18.3%) steadily increased; and (f) mask behavior of others (31.6%) composed the largest discussion category and increased over time. Of tweets, 45% contained a hyperlink, 40% contained mentions, 33% contained hashtags, and 16.5% were expressed as a question. Conclusions Users ascribed many meanings to mask wearing in the social media information environment revealing that COVID-19 risk was expressed in a more expanded range than objective risk. The simultaneous amplification and attenuation of COVID-19 risk perception on social media complicates public health messaging about mask wearing. 
    more » « less
  5. Background As a number of vaccines for COVID-19 are given emergency use authorization by local health agencies and are being administered in multiple countries, it is crucial to gain public trust in these vaccines to ensure herd immunity through vaccination. One way to gauge public sentiment regarding vaccines for the goal of increasing vaccination rates is by analyzing social media such as Twitter. Objective The goal of this research was to understand public sentiment toward COVID-19 vaccines by analyzing discussions about the vaccines on social media for a period of 60 days when the vaccines were started in the United States. Using the combination of topic detection and sentiment analysis, we identified different types of concerns regarding vaccines that were expressed by different groups of the public on social media. Methods To better understand public sentiment, we collected tweets for exactly 60 days starting from December 16, 2020 that contained hashtags or keywords related to COVID-19 vaccines. We detected and analyzed different topics of discussion of these tweets as well as their emotional content. Vaccine topics were identified by nonnegative matrix factorization, and emotional content was identified using the Valence Aware Dictionary and sEntiment Reasoner sentiment analysis library as well as by using sentence bidirectional encoder representations from transformer embeddings and comparing the embedding to different emotions using cosine similarity. Results After removing all duplicates and retweets, 7,948,886 tweets were collected during the 60-day time period. Topic modeling resulted in 50 topics; of those, we selected 12 topics with the highest volume of tweets for analysis. Administration and access to vaccines were some of the major concerns of the public. Additionally, we classified the tweets in each topic into 1 of the 5 emotions and found fear to be the leading emotion in the tweets, followed by joy. Conclusions This research focused not only on negative emotions that may have led to vaccine hesitancy but also on positive emotions toward the vaccine. By identifying both positive and negative emotions, we were able to identify the public's response to the vaccines overall and to news events related to the vaccines. These results are useful for developing plans for disseminating authoritative health information and for better communication to build understanding and trust. 
    more » « less