skip to main content


Title: Developmental lineage of human pluripotent stem cell‐derived cardiac fibroblasts affects their functional phenotype
Abstract

Cardiac fibroblasts (CFBs) support heart function by secreting extracellular matrix (ECM) and paracrine factors, respond to stress associated with injury and disease, and therefore are an increasingly important therapeutic target. We describe how developmental lineage of human pluripotent stem cell‐derived CFBs, epicardial (EpiC‐FB), and second heart field (SHF‐FB) impacts transcriptional and functional properties. Both EpiC‐FBs and SHF‐FBs exhibited CFB transcriptional programs and improved calcium handling in human pluripotent stem cell‐derived cardiac tissues. We identified differences including in composition of ECM synthesized, secretion of growth and differentiation factors, and myofibroblast activation potential, with EpiC‐FBs exhibiting higher stress‐induced activation potential akin to myofibroblasts and SHF‐FBs demonstrating higher calcification and mineralization potential. These phenotypic differences suggest that EpiC‐FBs have utility in modeling fibrotic diseases while SHF‐FBs are a promising source of cells for regenerative therapies. This work directly contrasts regional and developmental specificity of CFBs and informs CFB in vitro model selection.

 
more » « less
Award ID(s):
1743346 1648035
NSF-PAR ID:
10419561
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1096
Date Published:
Journal Name:
The FASEB Journal
Volume:
35
Issue:
9
ISSN:
0892-6638
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Aims

    Dissecting complex interactions among transcription factors (TFs), microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) are central for understanding heart development and function. Although computational approaches and platforms have been described to infer relationships among regulatory factors and genes, current approaches do not adequately account for how highly diverse, interacting regulators that include noncoding RNAs (ncRNAs) control cardiac gene expression dynamics over time.

    Methods

    To overcome this limitation, we devised an integrated framework, cardiac gene regulatory modeling (CGRM) that integrates LogicTRN and regulatory component analysis bioinformatics modeling platforms to infer complex regulatory mechanisms. We then used CGRM to identify and compare the TF-ncRNA gene regulatory networks that govern early- and late-stage cardiomyocytes (CMs) generated by in vitro differentiation of human pluripotent stem cells (hPSC) and ventricular and atrial CMs isolated during in vivo human cardiac development.

    Results

    Comparisons of in vitro versus in vivo derived CMs revealed conserved regulatory networks among TFs and ncRNAs in early cells that significantly diverged in late staged cells. We report that cardiac genes (“heart targets”) expressed in early-stage hPSC-CMs are primarily regulated by MESP1, miR-1, miR-23, lncRNAs NEAT1 and MALAT1, while GATA6, HAND2, miR-200c, NEAT1 and MALAT1 are critical for late hPSC-CMs. The inferred TF-miRNA-lncRNA networks regulating heart development and contraction were similar among early-stage CMs, among individual hPSC-CM datasets and between in vitro and in vivo samples. However, genes related to apoptosis, cell cycle and proliferation, and transmembrane transport showed a high degree of divergence between in vitro and in vivo derived late-stage CMs. Overall, late-, but not early-stage CMs diverged greatly in the expression of “heart target” transcripts and their regulatory mechanisms.

    Conclusions

    In conclusion, we find that hPSC-CMs are regulated in a cell autonomous manner during early development that diverges significantly as a function of time when compared to in vivo derived CMs. These findings demonstrate the feasibility of using CGRM to reveal dynamic and complex transcriptional and posttranscriptional regulatory interactions that underlie cell directed versus environment-dependent CM development. These results with in vitro versus in vivo derived CMs thus establish this approach for detailed analyses of heart disease and for the analysis of cell regulatory systems in other biomedical fields.

     
    more » « less
  2. Abstract

    Aging is the main risk factor for cardiovascular disease (CVD). As the world's population ages rapidly and CVD rates rise, there is a growing need for physiologically relevant models of aging hearts to better understand cardiac aging. Translational research relies heavily on young animal models; however, these models correspond to early ages in human life, therefore cannot fully capture the pathophysiology of age‐related CVD. Here, we first investigated the transcriptomic and proteomic changes that occur with human cardiac aging. We then chronologically aged human induced pluripotent stem cell‐derived cardiomyocytes (iCMs) and showed that 14‐month‐old iCMs exhibited a similar aging profile to the human CMs and recapitulated age‐related disease hallmarks. Using aged iCMs, we studied the effect of cell age on the young extracellular matrix (ECM) therapy, an emerging approach for myocardial infarction (MI) treatment and prevention. Young ECM decreased oxidative stress, improved survival, and post‐MI beating in aged iCMs. In the absence of stress, young ECM improved beating and reversed aging‐associated expressions in 3‐month‐old iCMs while causing the opposite effect on 14‐month‐old iCMs. The same young ECM treatment surprisingly increased SASP and impaired beating in advanced aged iCMs. Overall, we showed that young ECM therapy had a positive effect on post‐MI recovery; however, cell age was determinant in the treatment outcomes without any stress conditions. Therefore, “one‐size‐fits‐all” approaches to ECM treatments fail, and cardiac tissue engineered models with age‐matched human iCMs are valuable in translational basic research for determining the appropriate treatment, particularly for the elderly.

     
    more » « less
  3. null (Ed.)
    Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) enable cardiotoxicity testing and personalized medicine. However, their maturity is of concern, including relatively depolarized resting membrane potential and more spontaneous activity compared with adult cardiomyocytes, implicating low or lacking inward rectifier potassium current ( I k1 ). Here, protein quantification confirms Kir2.1 expression in hiPSC-CM syncytia, albeit several times lower than in adult heart tissue. We find that hiPSC-CM culture density influences Kir2.1 expression at the mRNA level (potassium inwardly rectifying channel subfamily J member 2) and at the protein level and its associated electrophysiology phenotype. Namely, all-optical cardiac electrophysiology and pharmacological treatments reveal reduction of spontaneous and irregular activity and increase in action potential upstroke in denser cultures. Blocking I k1 -like currents with BaCl 2 increased spontaneous frequency and blunted action potential upstrokes during pacing in a dose-dependent manner only in the highest-density cultures, in line with I k1 ’s role in regulating the resting membrane potential. Our results emphasize the importance of syncytial growth of hiPSC-CMs for more physiologically relevant phenotype and the power of all-optical electrophysiology to study cardiomyocytes in their multicellular setting. NEW & NOTEWORTHY We identify cell culture density and cell-cell contact as an important factor in determining the expression of a key ion channel at the transcriptional and the protein levels, KCNJ2/Kir2.1, and its contribution to the electrophysiology of human induced pluripotent stem cell-derived cardiomyocytes. Our results indicate that studies on isolated cells, out of tissue context, may underestimate the cellular ion channel properties being characterized. 
    more » « less
  4. Abstract

    Uncovering gene-phenotype relationships can be enabled by precise gene modulation in human induced pluripotent stem-cell-derived cardiomyocytes (iPSC-CMs) and follow up phenotyping using scalable all-optical electrophysiology platforms. Such efforts towards human functional genomics can be aided by recent CRISPR-derived technologies for reversible gene inhibition or activation (CRISPRi/a). We set out to characterize the performance of CRISPRi in post-differentiated iPSC-CMs, targeting key cardiac ion channel genes,KCNH2,KCNJ2, andGJA1, and providing a multiparametric quantification of the effects on cardiac repolarization, stability of the resting membrane potential and conduction properties using all-optical tools. More potent CRISPRi effectors, e.g., Zim3, and optimized viral delivery led to improved performance on par with the use of CRISPRi iPSC lines. Confirmed mild yet specific phenotype changes when CRISPRi is deployed in non-dividing differentiated heart cells is an important step towards more holistic pre-clinical cardiotoxicity testing and for future therapeutic use in vivo.

     
    more » « less
  5. The epigenetic landscape and the responses to pharmacological epigenetic regulators in each human are unique. Classes of epigenetic writers and erasers, such as histone acetyltransferases, HATs, and histone deacetylases, HDACs, control DNA acetylation/deacetylation and chromatin accessibility, thus exerting transcriptional control in a tissue- and person-specific manner. Rapid development of novel pharmacological agents in clinical testing—HDAC inhibitors (HDACi)—targets these master regulators as common means of therapeutic intervention in cancer and immune diseases. The action of these epigenetic modulators is much less explored for cardiac tissue, yet all new drugs need to be tested for cardiotoxicity. To advance our understanding of chromatin regulation in the heart, and specifically how modulation of DNA acetylation state may affect functional electrophysiological responses, human-induced pluripotent stem-cell-derived cardiomyocyte (hiPSC-CM) technology can be leveraged as a scalable, high-throughput platform with ability to provide patient-specific insights. This review covers relevant background on the known roles of HATs and HDACs in the heart, the current state of HDACi development, applications, and any adverse cardiac events; it also summarizes relevant differential gene expression data for the adult human heart vs. hiPSC-CMs along with initial transcriptional and functional results from using this new experimental platform to yield insights on epigenetic control of the heart. We focus on the multitude of methodologies and workflows needed to quantify responses to HDACis in hiPSC-CMs. This overview can help highlight the power and the limitations of hiPSC-CMs as a scalable experimental model in capturing epigenetic responses relevant to the human heart. 
    more » « less