skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Modeling hiPSC-to-Early Cardiomyocyte Differentiation Process using Microsimulation and Markov Chain Models
Cardiomyocytes (CMs), the contractile heart cells that can be derived from human induced pluripotent stem cells (hiPSCs). These hiPSC derived CMs can be used for cardiovascular disease drug testing and regeneration therapies, and they have therapeutic potential. Currently, hiPSC-CM differentiation cannot yet be controlled to yield specific heart cell subtypes consistently. Designing differentiation processes to consistently direct differentiation to specific heart cells is important to realize the full therapeutic potential of hiPSC-CMs. A model that accurately represents the dynamic changes in cell populations from hiPSCs to CMs over the differentiation timeline is a first step towards designing processes for directing differentiation. This paper introduces a microsimulation model for studying temporal changes in the hiPSC-to-early CM differentiation. The differentiation process for each cell in the microsimulation model is represented by a Markov chain model (MCM). The MCM includes cell subtypes representing key developmental stages in hiPSC differentiation to early CMs. These stages include pluripotent stem cells, early primitive streak, late primitive streak, mesodermal progenitors, early cardiac progenitors, late cardiac progenitors, and early CMs. The time taken by a cell to transit from one state to the next state is assumed to be exponentially distributed. The transition probabilities of the Markov chain process and the mean duration parameter of the exponential distribution were estimated using Bayesian optimization. The results predicted by the MCM agree with the data.  more » « less
Award ID(s):
2135059
PAR ID:
10573762
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
PSE Press
Date Published:
ISBN:
978-1-7779403-2-4
Page Range / eLocation ID:
344 to 350
Format(s):
Medium: X
Location:
Breckenridge, Colorado, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Cardiomyocytes (CMs) are heart cells responsible for heart contraction and relaxation. CMs can be derived from human induced pluripotent stem cells (hiPSCs) with high yield and purity. Mature CMs can potentially replace dead and dysfunctional cardiac tissue and be used for screening cardiac drugs and toxins. However, hiPSCs-derived CMs (hiPSC-CMs) are immature, which limits their utilization. Therefore, it is crucial to understand how experimental variables, especially tunable ones, of hiPSC expansion and differentiation phases affect the hiPSC-CM maturity stage. This study applied clustering algorithms to day 30 cardiac differentiation data to investigate if any maturity-related cell features could be related to the experimental variables. The best models were obtained using k-means and Gaussian mixture model clustering algorithms based on the evaluation metrics. They grouped the cells based on eccentricity and elongation. The cosine similarity between the clustering results and the experimental parameters revealed that the Gaussian mixture model results have strong similarities of 0.88, 0.94, and 0.93 with axial ratio, diameter, and cell concentration. 
    more » « less
  2. During mammalian development, the left and right ventricles arise from early populations of cardiac progenitors known as the first and second heart fields, respectively. While these populations have been extensively studied in non-human model systems, their identification and study in vivo human tissues have been limited due to the ethical and technical limitations of accessing gastrulation-stage human embryos. Human-induced pluripotent stem cells (hiPSCs) present an exciting alternative for modeling early human embryogenesis due to their well-established ability to differentiate into all embryonic germ layers. Here, we describe the development of a TBX5/MYL2 lineage tracing reporter system that allows for the identification of FHF- progenitors and their descendants including left ventricular cardiomyocytes. Furthermore, using single-cell RNA sequencing (scRNA-seq) with oligonucleotide-based sample multiplexing, we extensively profiled differentiating hiPSCs across 12 timepoints in two independent iPSC lines. Surprisingly, our reporter system and scRNA-seq analysis revealed a predominance of FHF differentiation using the small molecule Wnt-based 2D differentiation protocol. We compared this data with existing murine and 3D cardiac organoid scRNA-seq data and confirmed the dominance of left ventricular cardiomyocytes (>90%) in our hiPSC-derived progeny. Together, our work provides the scientific community with a powerful new genetic lineage tracing approach as well as a single-cell transcriptomic atlas of hiPSCs undergoing cardiac differentiation. 
    more » « less
  3. Abstract Efficient generation of cardiomyocytes from human-induced pluripotent stem cells (hiPSCs) is important for their application in basic and translational studies. Space microgravity can significantly change cell activities and function. Previously, we reported upregulation of genes associated with cardiac proliferation in cardiac progenitors derived from hiPSCs that were exposed to space microgravity for 3 days. Here we investigated the effect of long-term exposure of hiPSC-cardiac progenitors to space microgravity on global gene expression. Cryopreserved 3D hiPSC-cardiac progenitors were sent to the International Space Station (ISS) and cultured for 3 weeks under ISS microgravity and ISS 1 G conditions. RNA-sequencing analyses revealed upregulation of genes associated with cardiac differentiation, proliferation, and cardiac structure/function and downregulation of genes associated with extracellular matrix regulation in the ISS microgravity cultures compared with the ISS 1 G cultures. Gene ontology analysis and Kyoto Encyclopedia of Genes and Genomes mapping identified the upregulation of biological processes, molecular function, cellular components, and pathways associated with cell cycle, cardiac differentiation, and cardiac function. Taking together, these results suggest that space microgravity has a beneficial effect on the differentiation and growth of cardiac progenitors. 
    more » « less
  4. Abstract Over the past decades, mesenchymal stromal cells (MSCs) have been extensively investigated as a potential therapeutic cell source for the treatment of various disorders. Differentiation of MSCs from human induced pluripotent stem cells (iMSCs) has provided a scalable approach for the biomanufacturing of MSCs and related biological products. Although iMSCs shared typical MSC markers and functions as primary MSCs (pMSCs), there is a lack of lineage specificity in many iMSC differentiation protocols. Here, a stepwise hiPSC‐to‐iMSC differentiation method is employed via intermediate cell stages of neural crest and cytotrophoblast to generate lineage‐specific MSCs with varying differentiation efficiencies and gene expression. Through a comprehensive comparison between early developmental cell types (hiPSCs, neural crest, and cytotrophoblast), two lineage‐specific iMSCs, and six source‐specific pMSCs, are able to not only distinguish the transcriptomic differences between MSCs and early developmental cells, but also determine the transcriptomic similarities of iMSC subtypes to postnatal or perinatal pMSCs. Additionally, it is demonstrated that different iMSC subtypes and priming conditions affected EV production, exosomal protein expression, and cytokine cargo. 
    more » « less
  5. Abstract Human-induced pluripotent stem cell (hiPSC)-derived cardiomyocytes have many promising applications, including the regeneration of injured heart muscles, cardiovascular disease modeling, and drug cardiotoxicity screening. Current differentiation protocols yield a heterogeneous cell population that includes pluripotent stem cells and different cardiac subtypes (pacemaking and contractile cells). The ability to purify these cells and obtain well-defined, controlled cell compositions is important for many downstream applications; however, there is currently no established and reliable method to identify hiPSC-derived cardiomyocytes and their subtypes. Here, we demonstrate that second harmonic generation (SHG) signals generated directly from the myosin rod bundles can be a label-free, intrinsic optical marker for identifying hiPSC-derived cardiomyocytes. A direct correlation between SHG signal intensity and cardiac subtype is observed, with pacemaker-like cells typically exhibiting ~70% less signal strength than atrial- and ventricular-like cardiomyocytes. These findings suggest that pacemaker-like cells can be separated from the heterogeneous population by choosing an SHG intensity threshold criteria. This work lays the foundation for developing an SHG-based high-throughput flow sorter for purifying hiPSC-derived cardiomyocytes and their subtypes. 
    more » « less